【題目】已知函數(shù)有兩個(gè)零點(diǎn),有一個(gè)極值點(diǎn)

(1)求實(shí)數(shù)a的取值范圍;

(2)求證:

【答案】(1)(2)證明見解析

【解析】

1)先求導(dǎo),得,對(duì)參數(shù)進(jìn)行分類討論,確定只有當(dāng)時(shí),有一個(gè)極值點(diǎn),上單調(diào)遞減,上單調(diào)遞增,故只需,解出即可

2)由(1)可判斷,,可令,則,由化簡(jiǎn)可得,,即,最終需要通過構(gòu)造函數(shù),求證即可

解:(1)函數(shù)定義域?yàn)?/span>,

①若,則僅一個(gè)零點(diǎn),不符題意

②若,則

上單調(diào)遞增,不可能有兩個(gè)零點(diǎn),也不符題意

③若,令,即

只能取一個(gè)零點(diǎn),當(dāng),,

所以上單調(diào)遞減,上單調(diào)遞增,而要使有兩個(gè)零點(diǎn),

要滿足,即; 且當(dāng)趨于0和正無窮時(shí),趨向正無窮

綜上a的取值范圍為

2)由題意及(1)可知,

法一:令,則,,

,即:

即:,只需證:

,則

,則

上遞增,

上遞增,

法二:構(gòu)造函數(shù)

(易知等號(hào)取不到)

,上遞減,

即:,則

而由,,上單調(diào)遞增

,得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;

(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐PABC中,PC⊥平面ABC,PCAC=2,ABBC,DPB上一點(diǎn),且CD⊥平面PAB

(1)求證:AB⊥平面PCB;

(2)求二面角CPAB的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】采用系統(tǒng)抽樣方法從1000人中抽取50人做問卷調(diào)查,為此將他們隨機(jī)編號(hào)1,, ,1000,適當(dāng)分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為8,抽到的50人中,編號(hào)落入?yún)^(qū)間的人做問卷A,編號(hào)落入?yún)^(qū)間的人做問卷B,其余的人做問卷C,則抽到的人中,做問卷C的人數(shù)為( )

A. 12 B. 13 C. 14 D. 15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在股票市場(chǎng)上,投資者常根據(jù)股價(jià)每股的價(jià)格走勢(shì)圖來操作,股民老張?jiān)谘芯磕持还善睍r(shí),發(fā)現(xiàn)其在平面直角坐標(biāo)系內(nèi)的走勢(shì)圖有如下特點(diǎn):每日股價(jià)與時(shí)間的關(guān)系在ABC段可近似地用函數(shù)的圖象從最高點(diǎn)A到最低點(diǎn)C的一段來描述如圖,并且從C點(diǎn)到今天的D點(diǎn)在底部橫盤整理,今天也出現(xiàn)了明顯的底部結(jié)束信號(hào).老張預(yù)測(cè)這只股票未來一段時(shí)間的走勢(shì)圖會(huì)如圖中虛線DEF段所示,且DEF段與ABC段關(guān)于直線l對(duì)稱,點(diǎn)B,D的坐標(biāo)分別是

請(qǐng)你幫老張確定a,的值,并寫出ABC段的函數(shù)解析式;

如果老張預(yù)測(cè)準(zhǔn)確,且今天買入該只股票,那么買入多少天后股價(jià)至少是買入價(jià)的兩倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如右圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針方

向滾動(dòng),MN是小圓的一條固定直徑的兩個(gè)端點(diǎn).那么,當(dāng)小圓這

樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小組有7個(gè)同學(xué),其中4個(gè)同學(xué)從來沒有參加過天文研究性學(xué)習(xí)活動(dòng),3個(gè)同學(xué)曾經(jīng)參加過天文研究性學(xué)習(xí)活動(dòng).

1)現(xiàn)從該小組中隨機(jī)選2個(gè)同學(xué)參加天文研究性學(xué)習(xí)活動(dòng),求恰好選到1個(gè)曾經(jīng)參加過天文研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率;

2)若從該小組隨機(jī)選2個(gè)同學(xué)參加天文研究性學(xué)習(xí)活動(dòng),則活動(dòng)結(jié)束后,該小組有參加過天文研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)是一個(gè)隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對(duì)轄區(qū)內(nèi),三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評(píng)估,考評(píng)分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級(jí)”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級(jí)”環(huán)保單位.現(xiàn)通過分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評(píng)分?jǐn)?shù)如下:

類行業(yè):85,82,77,78,83,87;

類行業(yè):76,67,80,8579,81;

類行業(yè):8789,76,8675,8490,82

(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);

(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級(jí)”環(huán)保單位,又有“非星級(jí)”環(huán)保單位的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知px2≤5x-4,qx2-(a+2)x+2a≤0.

(1)p是真命題,求對(duì)應(yīng)x的取值范圍;

(2)pq的必要不充分條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案