【題目】已知某企業(yè)生產某種產品的年固定成本為200萬元,且每生產1噸該產品需另投入12萬元,現(xiàn)假設該企業(yè)在一年內共生產該產品噸并全部銷售完.每噸的銷售收入為萬元,且.
(1)求該企業(yè)年總利潤(萬元)關于年產量(噸)的函數(shù)關系式;
(2)當年產量為多少噸時,該企業(yè)在這一產品的生產中所獲年總利潤最大?
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足,且.
(1)求的解析式;
(2)設函數(shù),當時,求的最小值;
(3)設函數(shù),若對任意,總存在,使得成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在這智能手機爆發(fā)的時代,大部分高中生都有手機,在手機面前,有些學生無法抵御手機尤其是手機游戲和短視頻的誘惑,從而導致無法專心完成學習任務,成績下滑;但是對于自制力強,能有效管理自己的學生,手機不僅不會對他們的學習造成負面影響,還能成為他們學習的有力助手,我校某研究型學習小組調查研究“中學生使用智能手機對學習的影響”,部分統(tǒng)計數(shù)據如表:
參考數(shù)據:,其中.
(1)試根據以上數(shù)據,運用獨立性檢驗思想,指出有多大把握認為中學生使用手機對學習有影響?
(2)研究小組將該樣本中不使用手機且成績優(yōu)秀的同學記為組,使用手機且成績優(yōu)秀的同學記為組,計劃從組推選的4人和組推選的2人中,隨機挑選兩人來分享學習經驗.求挑選的兩人中一人來自組、另一人來自組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的左、右焦點分別為,,點P在橢圓上,,橢圓的離心率.
(1)求橢圓C的標準方程;
(2)A,B是橢圓C上與點P不重合的任意兩點,若的重心是坐標原點O,試證明:的面積為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知平面平面,且,為等邊三角形,,,.與平面所成角的正弦值為.
(1)證明:平面;
(2)若是的中點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為,且過點.
(1)求橢圓C的方程;
(2)直線l交橢圓C于不同的兩點A、B,且中點E在直線上,線段的垂直平分線交y軸于點,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com