【題目】已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).
(1)將兩曲線化成普通坐標(biāo)方程;
(2)求兩曲線的公共弦長及公共弦所在的直線方程.
【答案】(1)曲線: ,曲線: ;(2) , .
【解析】試題分析:(1)因為,所以曲線的極坐標(biāo)方程化成普通坐標(biāo)方程是,由變形得,兩式平方相加可得,這就是曲線的普通坐標(biāo)方程;(2)兩圓的方程相減,可得兩圓公共弦所在的直線方程,求其中一個圓的圓心到公共弦所在直線的距離,也就是弦心距,利用弦心距、弦長一半、半徑的勾股數(shù)關(guān)系求弦長一半,再求弦長。
試題解析:解:(1)由題知,曲線: 的直角坐標(biāo)方程為: ①,
圓心為,半徑為1;
曲線: (為參數(shù))的直角坐標(biāo)方程為②,
(2)由①-②得, ,此即為過兩圓的交點(diǎn)的弦所在的直線方程.
圓心到直線的距離,
故兩曲線的公共弦長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z滿足|z|= ,z2的虛部為2.
(1)求z;
(2)設(shè)z,z2 , z﹣z2在復(fù)平面對應(yīng)的點(diǎn)分別為A,B,C,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海中一小島的周圍 內(nèi)有暗礁,海輪由西向東航行至處測得小島位于北偏東,航行8后,于處測得小島在北偏東(如圖所示).
(1)如果這艘海輪不改變航向,有沒有觸礁的危險?請說明理由.
(2)如果有觸礁的危險,這艘海輪在處改變航向為東偏南()方向航行,求的最小值.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓C過點(diǎn)A(6,4),B(1,﹣1),且圓心在直線l:x﹣5y+7=0上.
(1)求圓C的方程;
(2)P為圓C上的任意一點(diǎn),定點(diǎn)Q(7,0),求線段PQ中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x+1
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)求曲線在點(diǎn)(0,f(0))處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)是定義域R上的奇函數(shù).
(1)若f(1)>0,試求不等式f(x2+2x)+f(x﹣4)>0的解集;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣4f(x),求g(x)在[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球. (I)若用數(shù)組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;
(Ⅱ)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數(shù)獲獎的可能性最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是線段AD上一點(diǎn),AM=AB,DM=DC,SM⊥AD. (Ⅰ)證明:BM⊥平面SMC;
(Ⅱ)若SB與平面ABCD所成角為 ,N為棱SC上的動點(diǎn),當(dāng)二面角S﹣BM﹣N為 時,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x2+2ex+m﹣1,g(x)=x+ (x>0).
(1)若y=g(x)﹣m有零點(diǎn),求m的取值范圍;
(2)確定m的取值范圍,使得g(x)﹣f(x)=0有兩個相異實根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com