【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資(單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為(單位: 元),將該頻率視為概率,請回答下面問題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

【答案】(I)見解析; (Ⅱ)見解析.

【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.

詳解:(I)由題意得,甲公司一名推銷員的日工資(單位:) 與銷售件數(shù)的關(guān)系式為:.

乙公司一名推銷員的日工資(單位: ) 與銷售件數(shù)的關(guān)系式為:

(Ⅱ)記甲公司一名推銷員的日工資為(單位: ),由條形圖可得的分布列為

122

124

126

128

130

0.2

0.4

0.2

0.1

0.1

記乙公司一名推銷員的日工資為(單位: ),由條形圖可得的分布列為

120

128

144

160

0.2

0.3

0.4

0.1

∴僅從日均收入的角度考慮,我會選擇去乙公司.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為收看開幕式與性別有關(guān)?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學(xué)生各選取多少人?

(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)設(shè) ,若函數(shù)恰有一個零點,求實數(shù)的取值范圍;

(2)設(shè) ,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)的圖象向右平移一個單位,所得圖象與函數(shù)的圖象關(guān)于直線對稱;已知偶函數(shù)滿足,當(dāng)時,;若函數(shù)有五個零點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位從一所學(xué)校招收某類特殊人才,對位已經(jīng)選拔入圍的學(xué)生進(jìn)行運(yùn)動協(xié)調(diào)能力和邏輯思維能力的測試,其測試結(jié)果如下表:

例如,表中運(yùn)動協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生有人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這位參加測試的學(xué)生中隨機(jī)抽取一位,抽到運(yùn)動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率為.

(Ⅰ)求的值;

(Ⅱ)從參加測試的位學(xué)生中任意抽取位,求其中至少有一位運(yùn)動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生的概率;

(III)從參加測試的位學(xué)生中任意抽取位,設(shè)運(yùn)動協(xié)調(diào)能力或邏輯思維能力優(yōu)秀的學(xué)生人數(shù)為,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向左平移個單位,再將所得圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到的圖象,則的可能取值為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著我國汽車消費(fèi)水平的提高,二手車流通行業(yè)得到迅猛發(fā)展.某汽車交易市場對2017年成交的二手車交易前的使用時間(以下簡稱“使用時間”)進(jìn)行統(tǒng)計,得到頻率分布直方圖如圖1.

圖1 圖2

(1)記“在年成交的二手車中隨機(jī)選取一輛,該車的使用年限在”為事件試估計的概率;

(2)根據(jù)該汽車交易市場的歷史資料,得到散點圖如圖2,其中(單位:年)表示二手車的使用時間,(單位:萬元)表示相應(yīng)的二手車的平均交易價格.由散點圖看出,可采用作為二手車平均交易價格關(guān)于其使用年限的回歸方程,相關(guān)數(shù)據(jù)如下表(表中,):

5.5

8.7

1.9

301.4

79.75

385

①根據(jù)回歸方程類型及表中數(shù)據(jù),建立關(guān)于的回歸方程;

②該汽車交易市場對使用8年以內(nèi)(含8年)的二手車收取成交價格的傭金,對使用時間8年以上(不含8年)的二手車收取成交價格的傭金.在圖1對使用時間的分組中,以各組的區(qū)間中點值代表該組的各個值.若以2017年的數(shù)據(jù)作為決策依據(jù),計算該汽車交易市場對成交的每輛車收取的平均傭金.

附注:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為;

②參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面是直角梯形,.

(1)求證:平面;

(2)設(shè)為側(cè)棱上一點,,試確定的值,使得二面角的大小為.

查看答案和解析>>

同步練習(xí)冊答案