【題目】2016年6月22 日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關(guān)注“國際教育信息化大會”,某機構(gòu)隨機抽取了年齡在15-75歲之間的100人進行調(diào)查,經(jīng)統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9: 11.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”;
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調(diào)查.在這9人中再選取3人進行面對面詢問,記選取的3人中關(guān)注“國際教育信息化大會”的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:參考公式,其中.
臨界值表:
【答案】(1)列聯(lián)表見解析,有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”.
(2)分布列見解析,
【解析】試題分析:(Ⅰ)根據(jù)統(tǒng)計數(shù)據(jù),可得2×2列聯(lián)表,根據(jù)列聯(lián)表中的數(shù)據(jù),計算K2的值,即可得到結(jié)論;
(Ⅱ)ξ的可能取值有0,1,2,3,求出相應(yīng)的概率,可得ξ的分布列及數(shù)學(xué)期望.
試題解析:
解:(1)依題意可知,抽取的“青少年”共有人,“中老年”共有人.
完成的列聯(lián)表如下:
則 ,
因為,所以有的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“國際教育信息化大會”.
(2)根據(jù)題意知選出關(guān)注的人數(shù)為3,不關(guān)注的人數(shù)為6,在這9人中再選取3人進行面對面詢問, 的取值可以為0,1,2,3,則
, ,
, .
所以的分布列為
數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體AC1中,過點A作平面A1BD的垂線,垂足為點H,則以下命題中,錯誤的命題是( )
A.點H是△A1BD的垂心
B.AH的延長線經(jīng)過點C1
C.AH垂直平面CB1D1
D.直線AH和BB1所成角為45°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an} 的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時f(x)=2x﹣x2 ,
(1)求f(x)的表達(dá)式;
(2)設(shè)0<a<b,當(dāng)x∈[a,b]時,f(x)的值域為 ,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三棱柱的底面邊長為2, 是側(cè)棱的中點.
(1)證明:平面平面;
(2)若平面與平面所成銳角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是平行四邊形, 為的中點, 平面為的中點.
(1)證明: 平面;
(2)證明: 平面;
(3)求直線與平面所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com