【題目】某校高一班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見(jiàn)部分如圖.

1求分?jǐn)?shù)在的頻數(shù)及全班人數(shù);

2求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

3若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

【答案】(1)2,25;(2);(3).

【解析】

1先由頻率分布直方圖求出的頻率,結(jié)合莖葉圖中得分在的人數(shù)即可求得本次考試的總?cè)藬?shù);2根據(jù)莖葉圖的數(shù)據(jù),利用1中的總?cè)藬?shù)減去外的人數(shù),即可得到內(nèi)的人數(shù),從而可計(jì)算頻率分布直方圖中間矩形的高;3用列舉法列舉出所有的基本事件,找出符合題意得基本事件個(gè)數(shù),利用古典概型概率計(jì)算公式即可求出結(jié)果.

1分?jǐn)?shù)在的頻率為,

由莖葉圖知:

分?jǐn)?shù)在之間的頻數(shù)為2,

全班人數(shù)為

2分?jǐn)?shù)在之間的頻數(shù)為;

頻率分布直方圖中間的矩形的高為

3之間的3個(gè)分?jǐn)?shù)編號(hào)為,,之間的2個(gè)分?jǐn)?shù)編號(hào)為,,

之間的試卷中任取兩份的基本事件為:

,,,,,,10個(gè),

其中,至少有一個(gè)在之間的基本事件有7個(gè),

故至少有一份分?jǐn)?shù)在之間的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1y21的左右頂點(diǎn)是雙曲線(xiàn)C2的頂點(diǎn),且橢圓C1的上頂點(diǎn)到雙曲線(xiàn)C2的漸近線(xiàn)的距離為

(1)求雙曲線(xiàn)C2的方程;

(2)若直線(xiàn)與C1相交于M1,M2兩點(diǎn),與C2相交于Q1,Q2兩點(diǎn),且5,求|M1M2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四面體ABCD中,DA=DB=DC=DA、DB、DC兩兩互相垂直,點(diǎn)是△ABC的中心.

(1)求直線(xiàn)DA與平面ABC所成角的大小(用反三角函數(shù)表示);

(2)過(guò)OEAD,垂足為E,求ΔDEO繞直線(xiàn)DO旋轉(zhuǎn)一周所形成的幾何體的體積;

(3)將△DAO繞直線(xiàn)DO旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過(guò)程中,直線(xiàn)DA與直線(xiàn)BC所成角記為,求的取值范圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=-ln(x+m).

(1)設(shè)x=0f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;

2)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,是矩形,平面平面,,,,的中點(diǎn).

(1)求證:∥平面;

(2)在線(xiàn)段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓O經(jīng)過(guò)橢圓C=1ab0)的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)(b)在橢圓C上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線(xiàn)l與圓O相切,與橢圓C交于M、N兩點(diǎn),且|MN|=,求直線(xiàn)l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的焦距為2,左右焦點(diǎn)分別為,,以原點(diǎn)O為圓心,以橢圓C的半短軸長(zhǎng)為半徑的圓與直線(xiàn)相切.

求橢圓C的方程;

設(shè)不過(guò)原點(diǎn)的直線(xiàn)l與橢圓C交于A,B兩點(diǎn).

若直線(xiàn)的斜率分別為,,且,求證:直線(xiàn)l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);

若直線(xiàn)l的斜率是直線(xiàn)OA,OB斜率的等比中項(xiàng),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

(1)求曲線(xiàn)的直角坐標(biāo)方程;

(2)若直線(xiàn)與曲線(xiàn)相交于不同的兩點(diǎn)是線(xiàn)段的中點(diǎn),當(dāng)時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直三棱柱ABCA1B1C1中,側(cè)面BCC1B1為正方形,A1B1⊥B1C1.設(shè)A1C與AC1交于點(diǎn)D,B1C與BC1交于點(diǎn)E.

求證:(1)DE∥平面ABB1A1;

(2)BC1⊥平面A1B1C.

查看答案和解析>>

同步練習(xí)冊(cè)答案