【題目】設數(shù)f(log2x)的定義域是(2,4),則函數(shù) 的定義域是(
A.(2,4)
B.(2,8)
C.(8,32)
D.

【答案】A
【解析】解:∵f(log2x)的定義域是(2,4), ∴2<x<4.
即 1<log2x<2,
由1< <2,解得:2<x<4.
則函數(shù) 的定義域是(2,4).
故選:A.
【考點精析】本題主要考查了函數(shù)的定義域及其求法的相關知識點,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對于任意實數(shù)x,[x]表示不超過x的最大整數(shù),如[1.1]=1,[﹣2.1]=﹣3.定義在R上的函數(shù)f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0<x<1},則A中所有元素之和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=f(x)是偶函數(shù),定義x≥0時,f(x)=
(1)求f(﹣2);
(2)當x<﹣3時,求f(x)的解析式;
(3)設函數(shù)y=f(x)在區(qū)間[﹣5,5]上的最大值為g(a),試求g(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線過定點,且傾斜角為,以坐標原點為極點,軸的正半軸為極值的坐標系中,曲線的極坐標方程為

(1)求曲線的的直角坐標方程與直線的參數(shù)方程;

(2)若直線與曲線相交于不同的兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若不存在極值點,求的取值范圍;

(2)若,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知以為圓心的圓及其上一點.

(1)設圓軸相切,與圓外切,且圓心在直線上,求圓的標準方程;

(2)設平行于的直線與圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線在點的切線方程;

(2)對一切 恒成立,求實數(shù)的取值范圍;

(3)當時,試討論內(nèi)的極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應國家擴大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)萬件與年促銷費用)萬元滿足為常數(shù)).如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均生產(chǎn)投入成本的1.5倍(生產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).

(1)求常數(shù),并將該廠家2016年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);

(2)該廠家2016年的年促銷費用投入多少萬元時,廠家利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,向量分別為平面直角坐標內(nèi)軸正方向上的單位向量,若向量 , , ,

)求點的軌跡的方程;

)設橢圓,曲線的切線 交橢圓、兩點,試證:的面積為定值.

查看答案和解析>>

同步練習冊答案