若f(x)=|x-2a|+x-1的函數(shù)值恒為正數(shù),則a的范圍是
 
分析:去掉絕對值,化簡f(x),使f(x)恒為正即可.
解答:解:∵f(x)=|x-2a|+x-1=
2x-2a-1  (x≥2a)
2a-1       (x<2a)

∴當(dāng)x≥2a時,f(x)是增函數(shù),它的最小值是f(2a)=2a-1>0,
∴2a-1>0,即a>
1
2

當(dāng)x<2a時,f(x)=2a-1>0,
即a>
1
2

所以a的取值范圍是{a|a>
1
2
};
故答案為:{a|a>
1
2
}.
點評:本題考查了含有絕對值的一次函數(shù)的值域問題,通常把絕對值去掉,化為基本函數(shù),從而解答問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)為偶函數(shù),當(dāng)x>0時,f(x)=x(x-2),則當(dāng)x<0時,f(x)=
x(x+2)
x(x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法:①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函數(shù),則實數(shù)b=2;②f(x)=
2009-x2
+
x2-2009
既是奇函數(shù)又是偶函數(shù);③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞]時,f(x)=x(1+x),則當(dāng)x∈R時,f(x)=x(1+|x|);④已知f(x)是定義在R上的不恒為零的函數(shù),且對任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).其中所有正確命題的序號是 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市重點中學(xué)高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

定義:若{y|y=f(x),x∈A}=A,則f(x)稱為A上的一階回歸函數(shù);
若{y|y=f(f(x)),x∈A}=A,則f(x)稱為A上的二階回歸函數(shù);
若{y|y=f(f(f(x))),x∈A}=A,則f(x)稱為A上的三階回歸函數(shù).
下列判斷正確的個數(shù)是( )
①f(x)=3-x是[1,2]上的一階回歸函數(shù);
是[-1,0]上的一階回歸函數(shù)
是(0,+∞)上的二階回歸函數(shù);
是(2,+∞)上的三階回歸函數(shù).
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案