【題目】已知,命題:對,不等式恒成立;命題,使得成立.
(1)若為真命題,求的取值范圍;
(2)當(dāng)時,若假,為真,求的取值范圍.
【答案】(1) 1≤m≤2.(2) (﹣∞,1)∪(1,2].
【解析】
試題分析:(1)(2x-2)min≥m2-3m.即m2-3m≤-2,解得1≤m≤2;(2)p,q中一個是真命題,一個是假命題,解得m的取值范圍為(-∞,1)∪ (1,2].
試題解析:
(1)∵對任意x∈[0,1],不等式2x-2≥m2-3m恒成立,
∴(2x-2)min≥m2-3m.即m2-3m≤-2.
解得1≤m≤2.
因此,若p為真命題時,m的取值范圍是[1,2].
(2)∵a=1,且存在x∈[-1,1],使得m≤ax成立,
∴m≤x,命題q為真時,m≤1.
∵p且q為假,p或q為真,
∴p,q中一個是真命題,一個是假命題.
當(dāng)p真q假時,則解得1<m≤2;
當(dāng)p假q真時,即m<1.
綜上所述,m的取值范圍為(-∞,1)∪(1,2].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲題型:給出如圖數(shù)陣表格形式,表格內(nèi)是按某種規(guī)律排列成的有限個正整數(shù).
(1)記第一行的自左至右構(gòu)成數(shù)列,是的前項(xiàng)和,試求;
(2)記為第列第行交點(diǎn)的數(shù)字,觀察數(shù)陣請寫出表達(dá)式,若,試求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆世界低碳經(jīng)濟(jì)大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題,某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則需要國家至少補(bǔ)貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點(diǎn)且與軸相切,點(diǎn)關(guān)于圓心的對稱點(diǎn)為,動點(diǎn)的軌跡記為.
(1)求的方程;
(2)設(shè)直線:與曲線交于點(diǎn)、;直線:與交于點(diǎn),,其中,以、為直徑的圓、(、為圓心)的公共弦所在直線記為,求到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個內(nèi)角為且邊長為的菱形沿著較短的對角線折成一個二面角為的空間四邊形,則此空間四邊形的外接球的半徑為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩種型號臺燈,若購買2臺A型臺燈和6臺B型臺燈共需610元,若購買6臺A型臺燈和2臺B型臺燈共需470元.
(1)求A、B兩種型號臺燈每臺分別多少元?
(2)采購員小紅想采購A、B兩種型號臺燈共30臺,且總費(fèi)用不超過2200元,則最多能采購B型臺燈多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)有三個零點(diǎn),證明:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù),若在上存在極值,求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①函數(shù)是奇函數(shù);
②將函數(shù)的圖像向左平移個單位長度,得到函數(shù)的圖像;
③若是第一象限角且,則;
④是函數(shù)的圖像的一條對稱軸;
⑤函數(shù)的圖像關(guān)于點(diǎn)中心對稱。
其中,正確的命題序號是______________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com