【題目】以下說法中正確的是______.

①函數(shù)在區(qū)間上單調遞減;

②函數(shù)的圖象過定點;

③若是函數(shù)的零點,且,則;

④方程的解是;

⑤命題“,”的否定是.

【答案】②④⑤

【解析】

對于①,舉出反例;對于②,將點代入即可得結果;對于③,,中也有可能存在一個為零;對于④,根據(jù)指數(shù)與對數(shù)的運算性質解方程即可;對于⑤,由特稱命題的否定為全稱命題可得結果.

說法①:函數(shù)、每個區(qū)間上單調遞減,但是在整個定義域內不具有單調性,例如:,而,不具有單調遞減的性質;

說法②:當時,,所以函數(shù)的圖象過定點是正確的;

說法③:如果中也存在一個為零時,就不符合,故本說法不正確;

說法④:,故本說法④正確;

說法⑤:命題“”的否定是,.故⑤是正確的.

綜上,本題的答案為②④⑤.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的質量以其質量指標值衡量,并依據(jù)質量指標值劃分等級如下表:

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據(jù)以上抽樣調查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品”的規(guī)定?

(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產(chǎn)品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產(chǎn)品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等差數(shù)列的前項和為,若,且成等比數(shù)列.

(1)求的通項公式;

(2)設,記數(shù)列的前項和為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xax+(a1),

1)討論函數(shù)的單調性;

2)證明:若,則對任意x,x,xx,有。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中為真命題的是(  )

A.命題“若,則”的否命題

B.命題“若xy,則x|y|”的逆命題

C.命題“若x1,則”的否命題

D.命題“已知,若,則ab”的逆命題、否命題、逆否命題均為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)當時,若是函數(shù)的極值點,求證:;

(2)(i)求證:當時,;

(ii)若不等式對任意恒成立,求實數(shù)的取值范圍.

注:e=2.71828...為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求常數(shù)的值;

2)判斷并用定義法證明函數(shù)的單調性;

3)函數(shù)的圖象由函數(shù)的圖象先向右平移個單位,再向上平移個單位得到,寫出的一個對稱中心,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.若殘差平方和越小,則相關指數(shù)越小

B.將一組數(shù)據(jù)中每一個數(shù)據(jù)都加上或減去同一常數(shù),方差不變

C.的觀測值越大,則判斷兩個分類變量有關系的把握程度越小

D.若所有樣本點均落在回歸直線上,則相關系數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】環(huán)境指數(shù)是“宜居城市”評比的重要指標,根據(jù)以下環(huán)境指數(shù)的數(shù)據(jù),對名列前20名的“宜居城市”的環(huán)境指數(shù)進行分組統(tǒng)計,結果如表所示,現(xiàn)從環(huán)境指數(shù)在內的“宜居城市”中隨機抽取2個市進行調研,則至少有1個市的環(huán)境指數(shù)在的概率為( )

組號

分組

頻數(shù)

1

2

2

8

3

7

4

3

A.B.C.D.

查看答案和解析>>

同步練習冊答案