分析 利用導(dǎo)函數(shù)研究函數(shù)f(x)的單調(diào)性,利用單調(diào)性求其值域.
解答 解:函數(shù)f(x)=$\frac{xln(x-1)}{x-2}$,x∈[1.5,3],且x≠2.
則f′(x)=$\frac{[xln(x-1)]′(x-2)-(x-2)′[xln(x-1)]}{(x-2)^{2}}$,
令f′(x)=0,
解得:x=2.
∵x∈[1.5,3],且x≠2.
當(dāng)1.5≤x<2,f′(x)<0,故而f(x)是單調(diào)遞減,且f(x)>0.
當(dāng)2<x≤3,f′(x)>0,故而f(x)是單調(diào)遞增,且f(x)>0.
∴f(x)>0.
當(dāng)x=3時(shí),取得最大值為3ln2.
得函數(shù)f(x)的值域?yàn)椋?,3ln2].
故答案為:(0,3ln2].
點(diǎn)評(píng) 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ②④ | C. | ②③ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 50 | B. | 51 | C. | 100 | D. | 101 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2k+$\frac{3}{4}$<a<2k+$\frac{5}{4}$,k∈Z | B. | 2k+1<a<2k+3,k∈Z | ||
C. | 2k+1<a<2k+$\frac{5}{4}$,k∈Z | D. | 2k-$\frac{3}{4}$<a<2k+1,k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com