14.($\frac{1}{{2\sqrt{x}}}$+x35的展開式中x8的系數(shù)是$\frac{5}{2}$.(用數(shù)字作答)

分析 在二項展開式的通項公式中,令x的冪指數(shù)等于8,求得r的值,可得展開式中x8的系數(shù).

解答 解:($\frac{1}{{2\sqrt{x}}}$+x35的展開式的通項公式為Tr+1=${C}_{5}^{r}$•${(\frac{1}{2})}^{5-r}$•${x}^{\frac{7r-5}{2}}$,
令$\frac{7r-5}{2}$=8,求得r=3,可得展開式中x8的系數(shù)是${C}_{5}^{3}$•${(\frac{1}{2})}^{2}$=$\frac{5}{2}$,
故答案為:$\frac{5}{2}$.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.若某圓柱體的上部挖掉一個半球,下部挖掉一個圓錐后所得的幾何體的三視圖中的正(主)視圖和側(左)視圖如圖所示,則此時幾何體的體積是( 。
A.B.$\frac{4π}{3}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,這幾何體為( 。
A.長方體B.圓柱C.圓臺D.棱柱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,已知c=$\sqrt{3}$,b=1,B=30°.求角C及△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.點M(x,y)在函數(shù)y=-$\sqrt{1-{x}^{2}}$的圖象上,則$\frac{y-1}{x}$的取值范圍是( 。
A.[-1,1]B.(-1,1)C.(-∞,-1)∪(1,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設a,b,c是△ABC三個內(nèi)角A,B,C所對應的邊,且lgsinA,lgsinB,lgsinC成等差數(shù)列,那么直線xsinC-ysinA-a=0與直線xsin2B+ysin2C-c=0的位置關系( 。
A.平行B.垂直C.相交但不垂直D.重合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知x,y滿足約束條件$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ 3x-y-3≤0\end{array}\right.$,目標函數(shù)z=x2+y2的最大值為(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{4}{5}$C.$\sqrt{13}$D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知a,b,c是銳角△ABC中的角A、B、C的對邊,若$B=\frac{π}{4}$,則$\frac{acosC-ccosA}$的取值范圍為(  )
A.(-1,1)B.$(-\frac{1}{2},\frac{1}{2})$C.$(-\sqrt{2},\sqrt{2})$D.$(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,若$a=\frac{9}{4}$,則輸出S的值為( 。
A.10B.12C.14D.16

查看答案和解析>>

同步練習冊答案