P是以F1、F2為焦點的雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)上的一點,已知
PF1
PF2
=0,|
PF1
|=2|
PF2
|

(1)試求雙曲線的離心率e;
(2)過點P作直線分別與雙曲線兩漸近線相交于P1、P2兩點,當(dāng)
OP1
OP2
=-
27
4
2
PP1
+
PP2
=0,求雙曲線的方程.
解(1)∵|
PF1
|=2|
PF2
|
|
PF1
|-|
PF2
|=2a
,∴|
PF1
|=4a
|
PF2
|=2a

PF1
PF2
=0,∴(4a)2+(2a)2=(2c)2,∴e=
c
a
=
5

(2)由(1)知,雙曲線的方程可設(shè)為
x2
a2
-
y2
4a2
=1
,漸近線方程為y=±2x.
設(shè)P1(x1,2x1),P2(x2,-2x2),P(x,y).
OP1
OP2
=-3x1x2=-
27
4
,∴x1x2=
9
4
.∵2
PP1
+
PP2
=0
,∴
x=
2x1+x2
3
y=
2(2x1-x2)
3
.

∵點P在雙曲線上,∴
(2x1+x2)2
9a2
-
(2x1-x2)2
9a2
=1

化簡得,x1x2=
9a2
8
.∴
9a2
8
=
9
4
.∴a2=2.∴雙曲線的方程為
x2
2
-
y2
8
=1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是以F1、F2為焦點的橢圓
x2
b2
+
y2
a2
=1 (a>b>0)
上的任一點,∠F1PF2最大值是120°,求橢圓離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是以F1,F(xiàn)2為焦點的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點,若PF1⊥PF2,tan∠PF1F2=
1
2
,則此橢圓的離心率為( 。
A、
1
2
B、
2
3
C、
1
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P是以F1,F(xiàn)2為焦點的雙曲線
x2
a2
-
y2
b2
=1
上的一點,若
PF1
PF2
=0,tan∠PF1F2=2,則此雙曲線的離心率為( 。
A、
5
B、5
C、2
5
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P是以F1,F(xiàn)2為焦點的橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的一點,且
PF1
PF2
=0
,tan∠PF1F2=
1
2
,則此橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是以F1,F(xiàn)2為焦點的橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點,且
PF1
PF2
=0
tan∠PF1F2=
1
2
,則該橢圓的離心率等于
5
3
5
3

查看答案和解析>>

同步練習(xí)冊答案