如圖,四棱錐中,底面為平行四邊形,,⊥底面.

(1)證明:平面平面

(2)若二面角,求與平面所成角的正弦值。

 

【答案】

(1)∵       ∴

       又∵⊥底面       ∴

      又∵           ∴平面

       而平面

   ∴平面平面              

(2)由(1)所證,平面 

所以∠即為二面角P-BC-D的平面角,即∠

,所以                 

分別以、軸、軸、軸建立空間直角坐標系。

 則,

所以,,,

設平面的法向量為,則   

  可解得

與平面所成角的正弦值為

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐中,底面ABCD是菱形,SA=SD=
39
,AD=2
3
,且S-AD-B大小為120°,∠DAB=60°.
(1)求異面直線SA與BD所成角的正切值;
(2)求證:二面角A-SD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山西省高三第一次月考摸底理科數(shù)學試卷(解析版) 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,⊥底面.①證明:平面平面; ②若二面角,求與平面所成角的正弦值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省五校聯(lián)盟模擬考試理科數(shù)學試卷 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,⊥底面.

(1)證明:平面平面;

(2)若二面角,求與平面所成角的正弦值。

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省10-11學年高一下學期期末考試數(shù)學(理) 題型:解答題

(本小題滿分12分)如圖,四棱錐中,底面為平行四邊形,,底面.

(1)證明:;

(2)若求二面角的余弦值.

 

查看答案和解析>>

同步練習冊答案