12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(3)的值等于-1.

分析 由函數(shù)性質(zhì)得f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,
∴f(3)=f(2)-f(1)=[f(1)-f(0)]-f(1)=-f(0)=-(0+1)=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.解不等式x-3x2>-2的解集是(-$\frac{2}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,拋物線x2=4y在點(diǎn)$M(t,\;\frac{1}{4}{t^2})\;(t>0)$處的切線與x軸相交于點(diǎn)N,O、F分別為該拋物線的頂點(diǎn)、焦點(diǎn).
(1)當(dāng)t=2時(shí),求切線MN的方程;
(2)當(dāng)t∈(0,1]時(shí),求四邊形OFMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若函數(shù)f(x)滿足:對(duì)于其定義域D內(nèi)的任何一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱(chēng)函數(shù)f(x)在D上封閉.
(1)若下列函數(shù)的定義域?yàn)镈=(0,1),試判斷其中哪些在D上封閉,并說(shuō)明理由.f1(x)=2x-1,f2(x)=2x-1.
(2)若函數(shù)g(x)=$\frac{5x-a}{x+2}$的定義域?yàn)椋?,2),是否存在實(shí)數(shù)a,使得g(x)在其定義域(1,2)上封閉?若存在,求出所有a的值,并給出證明:若不存在,請(qǐng)說(shuō)明理由.
(3)已知函數(shù)f(x)在其定義域D上封閉,且單調(diào)遞增.若x0∈D且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.記不等式2|x-1|+x-1≤1的解集為M,不等式16x2-8x+1≤4的解集為N,求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)是定義在[0,+∞)上單調(diào)遞增的函數(shù),則滿足$f({2x-1})<f({\frac{1}{3}})$的x取值范圍是( 。
A.$({\frac{1}{2}\;,\;\;\frac{2}{3}})$B.$({-∞\;,\;\;\frac{2}{3}})$C.$[{\frac{1}{2}\;,\;\;\frac{2}{3}})$D.$({-∞\;,\;\;\frac{2}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若x,y∈R,則“x>y”是“x2>y2”的既不充分也不必要條件.(從“充要、充分不必要不充分、必要不充分、既不充分也不必要”四種關(guān)系中選擇一個(gè)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.點(diǎn)P(2,4)關(guān)于直線x+y+1=0的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為( 。
A.(5,-3)B.(3,-5)C.(-5,3)D.(-5,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知命題p:?x∈R,log2(3x+1)≤0,則(  )
A.¬p:?x∈R,log2(3x+1)>0B.¬p:?x∈R,log2(3x+1)>0
C.¬p:?x∈R,log2(3x+1)≤0D.¬p:?x∈R,log2(3x+1)≤0

查看答案和解析>>

同步練習(xí)冊(cè)答案