【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的蛋糕作垃圾處理現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量單位:個(gè),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率若蛋糕店一天制作17個(gè)生日蛋糕

1求當(dāng)天的利潤(rùn)單位:元關(guān)于當(dāng)天需求量單位:個(gè),的函數(shù)解析式;

2求當(dāng)天的利潤(rùn)不低于750元的概率

【答案】1;2

【解析】

試題分析:1,分別求出函數(shù)的表達(dá)式,即可求解函數(shù)的解析式;2設(shè)當(dāng)天的利潤(rùn)不低于750元為事件,得出需求量不低于個(gè),即可求解當(dāng)天的利潤(rùn)不低于元的概率

試題解析:1當(dāng)時(shí),;

當(dāng)時(shí),

2設(shè)當(dāng)天的利潤(rùn)不低于750元為事件,

2利潤(rùn)不低于等價(jià)于需求量不低于16個(gè),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實(shí)際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機(jī)抽取個(gè)農(nóng)戶(hù),考察每個(gè)農(nóng)戶(hù)的年收入與年積蓄的情況進(jìn)行分析,設(shè)第個(gè)農(nóng)戶(hù)的年收入(萬(wàn)元),年積蓄(萬(wàn)元),經(jīng)過(guò)數(shù)據(jù)處理得

(Ⅰ)已知家庭的年結(jié)余對(duì)年收入具有線性相關(guān)關(guān)系,求線性回歸方程;

(Ⅱ)若該地區(qū)的農(nóng)戶(hù)年積蓄在萬(wàn)以上,即稱(chēng)該農(nóng)戶(hù)已達(dá)小康生活,請(qǐng)預(yù)測(cè)農(nóng)戶(hù)達(dá)到小康生活的最低年收入應(yīng)為多少萬(wàn)元?

附:在 中, 其中為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列中各項(xiàng)都大于1,前項(xiàng)和為,且滿(mǎn)足.

1求數(shù)列的通項(xiàng)公式;

2,求數(shù)列的前項(xiàng)和;

3求使得對(duì)所有都成立的最小正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

將圓上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍得到曲線

1)寫(xiě)出曲線的參數(shù)方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,若分別為曲線和直線上的一點(diǎn),求的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

將圓上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍得到曲線

1寫(xiě)出曲線的參數(shù)方程;

2以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸坐標(biāo)建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,若分別為曲線和直線上的一點(diǎn),求的最近距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,側(cè)面底面,中點(diǎn),.

(I)在線段上是否存在點(diǎn),使得//平面,指出點(diǎn)的位置并證明;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為測(cè)評(píng)班級(jí)學(xué)生對(duì)任課教師的滿(mǎn)意度,采用100分制打分的方式來(lái)計(jì)分,規(guī)定滿(mǎn)意度不低于98分,則評(píng)價(jià)該教師為優(yōu)秀,現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,以下莖葉圖記錄了他們對(duì)某教師的滿(mǎn)意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉);

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

(2)求從這10人中隨機(jī)選取3人,至多有1人評(píng)價(jià)該教師是優(yōu)秀的概率;

(3)以這10人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)班級(jí)的總體數(shù)據(jù),若從該班任選3人,記表示抽到評(píng)價(jià)該教師為優(yōu)秀的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修,可供利用的舊墻足夠長(zhǎng)),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖2所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m, 設(shè)利用舊墻的長(zhǎng)度為(單位: ),修建此矩形場(chǎng)地圍墻的總費(fèi)用為(單位:元).

)將表示為的函數(shù);

)試確定,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與曲線有三個(gè)不同的交點(diǎn).

(1)求圓的方程;

(2)已知點(diǎn)軸上的動(dòng)點(diǎn), , 分別切圓 兩點(diǎn).

①若,求及直線的方程;

②求證:直線恒過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案