在各項均為正數(shù)的數(shù)列{an}中,{Sn}為前n項和,nan+12=(n+1)an2+anan+1且a3=π,則tanS4=   
【答案】分析:根據(jù)題設(shè)中的遞推式和a3的值,分別求得a1,a2,a4,則數(shù)列的前4項的和可得代入tanS4即可求得答案.
解答:解:∵nan+12=(n+1)an2+anan+1
即[(n+1)an-nan+1](an+an+1)=0
∴(n+1)an-nan+1=0  或an+an+1=0
又∵數(shù)列{an}各項均為正數(shù)
=
=,a2=
同理求得a4=,a1=
∴tanS4=tan( ++π+)=tan =
故答案為
點評:本題主要考查了數(shù)列的求和問題,對于此種類型的題目首先化簡遞推式,推導(dǎo)出相鄰兩項的關(guān)系.屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在各項均為正數(shù)的數(shù)列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(1)證明{an}是等差數(shù)列,并求這個數(shù)列的通項公式及前n項和的公式;
(2)在平面直角坐標系xoy面上,設(shè)點Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點Mn在直線l上,Mn中最高點為Mk,若稱直線l與x軸.直線x=a,x=b所圍成的圖形的面積為直線l在區(qū)間[a,b]上的面積,試求直線l在區(qū)間[x3,xk]上的面積;
(3)若存在圓心在直線l上的圓紙片能覆蓋住點列Mn中任何一個點,求該圓紙片最小面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在各項均為正數(shù)的數(shù)列{an}中,已知點(an,an+1)(n∈N*)在函數(shù)y=2x的圖象上,且a25=8
(1)求證:數(shù)列{an}是等比數(shù)列,并求出其通項公式;
(2)若數(shù)列{bn}的前n項和為Sn,且bn=an+n,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•無為縣模擬)在各項均為正數(shù)的數(shù)列{an}中,對任意m,n∈N*都有am+n=am•an.若a6=64,則a9等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•朝陽區(qū)一模)在各項均為正數(shù)的數(shù)列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(Ⅰ)證明{an}是等差數(shù)列,并求這個數(shù)列的通項公式及前n項和的公式;
(Ⅱ)在XOY平面上,設(shè)點列Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點列Mn在直線C上,Mn中最高點為Mk,若稱直線C與x軸、直線x=a、x=b所圍成的圖形的面積為直線C在區(qū)間[a,b]上的面積,試求直線C在區(qū)間[x3,xk]上的面積;
(Ⅲ)是否存在圓心在直線C上的圓,使得點列Mn中任何一個點都在該圓內(nèi)部?若存在,求出符合題目條件的半徑最小的圓;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•朝陽區(qū)一模)在各項均為正數(shù)的數(shù)列{an}中,前n項和Sn滿足2Sn+1=an(2an+1),n∈N*
(Ⅰ)證明{an}是等差數(shù)列,并求這個數(shù)列的通項公式及前n項和的公式;
(Ⅱ)在XOY平面上,設(shè)點列Mn(xn,yn)滿足an=nxn,Sn=n2yn,且點列Mn在直線C上,Mn中最高點為Mk,若稱直線C與x軸、直線x=a,x=b所圍成的圖形的面積為直線C在區(qū)間[a,b]上的面積,試求直線C在區(qū)間[x3,xk]上的面積.

查看答案和解析>>

同步練習(xí)冊答案