【題目】已知橢圓的離心率為,分別為的左、右頂點(diǎn),上異于的動點(diǎn),面積的最大值為2.

(1)求橢圓的方程;

(2)證明:直線與直線的斜率乘積為定值;

(3)設(shè)直線,分別交直線兩點(diǎn),以為直徑作圓,當(dāng)圓的面積最小時,求該圓的方程.

【答案】(1)(2)詳見解析(3)

【解析】

1)依題意有,解出方程即可;(2)由(1)知,,,再利用點(diǎn)在曲線上得到結(jié)果;(3)根據(jù)第二問設(shè)出直線PAPB,解出點(diǎn)M,N的點(diǎn)坐標(biāo),進(jìn)而得到圓心Q的坐標(biāo),可以寫出圓的方程,由均值不等式得到最值.

(1)依題意有,解得,,

故所求橢圓方程為.

(2)由(1)知,

設(shè),則,

即直線與直線的斜率乘積為定值.

(3)設(shè)直線,則直線

,

的中點(diǎn)為,

于是以為直徑的圓的方程為,

,當(dāng)且僅當(dāng)時等號成立.

此時圓的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過定點(diǎn)B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2019的自主招生考試中,考生筆試成績分布在,隨機(jī)抽取200名考生成績作為樣本研究,按照筆試成績分成5組,第1組成績?yōu)?/span>,第2組成績?yōu)?/span>,第3組成績?yōu)?/span>,第4組成績?yōu)?/span>,第5組成績?yōu)?/span>,樣本頻率分布直方圖如下:

1)估計全體考生成績的中位數(shù);

2)為了能選撥出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第34,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,從這6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行外語交流面試,求這2名學(xué)生均來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)求函數(shù)的極值點(diǎn);

(2)若,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果既約分?jǐn)?shù)滿足為正整數(shù)),則稱牛分?jǐn)?shù)”.現(xiàn)將所有的牛分?jǐn)?shù)按遞增順序排成一個數(shù)列,稱為牛數(shù)列”.證明對于牛數(shù)列中的任兩個相鄰項(xiàng),都滿足

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是一個各位數(shù)字都不是0且沒有重復(fù)數(shù)字的三位數(shù),將組成的3個數(shù)字按從小到大排成的三位數(shù)記為,按從大到小排成的三位數(shù)記為,(例如,則,)閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,任意輸入一個,輸出的結(jié)果=( )

A. 693 B. 594 C. 495 D. 792

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)為曲線上的動點(diǎn),過軸的垂線,垂足為,滿足。

(1)求曲線的方程;

(2)直線與曲線交于兩不同點(diǎn),( 非原點(diǎn)),過,兩點(diǎn)分別作曲線的切線,兩切線的交點(diǎn)為。設(shè)線段的中點(diǎn)為,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型電器企業(yè),為了解組裝車間職工的生活情況,從中隨機(jī)抽取了名職工進(jìn)行測試,得到頻數(shù)分布表如下:

日組裝個數(shù)

人數(shù)

6

12

34

30

10

8

1)現(xiàn)從參與測試的日組裝個數(shù)少于的職工中任意選取人,求至少有人日組裝個數(shù)少于的概率;

2)由頻數(shù)分布表可以認(rèn)為,此次測試得到的日組裝個數(shù)服從正態(tài)分布近似為這人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).

i)若組裝車間有名職工,求日組裝個數(shù)超過的職工人數(shù);

ii)為鼓勵職工提高技能,企業(yè)決定對日組裝個數(shù)超過的職工日工資增加元,若在組裝車間所有職工中任意選取人,求這三人增加的日工資總額的期望.

附:若隨機(jī)變量服從正態(tài)分布,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車在我國各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機(jī)構(gòu)從該省抽取了5個城市,并統(tǒng)計了共享單車的指標(biāo)指標(biāo),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標(biāo)

2

4

5

6

8

指標(biāo)

3

4

4

4

5

1)試求間的相關(guān)系數(shù),并說明是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則認(rèn)為具有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒有較強(qiáng)的線性相關(guān)關(guān)系).

2)建立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)為7時,指標(biāo)的估計值.

3)若某城市的共享單車指標(biāo)在區(qū)間的右側(cè),則認(rèn)為該城市共享單車數(shù)量過多,對城市的交通管理有較大的影響交通管理部門將進(jìn)行治理,直至指標(biāo)在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車的指標(biāo)為13,則該城市的交通管理部門是否需要進(jìn)行治理?試說明理由.

參考公式:回歸直線中斜率和截距的最小二乘估計分別為

,,相關(guān)系數(shù)

參考數(shù)據(jù):,.

查看答案和解析>>

同步練習(xí)冊答案