【題目】如圖,為等腰梯形,,,,為矩形,平面平面.
(1)證明:平面;
(2)若到平面的距離為,求幾何體的體積.
【答案】(1)證明見(jiàn)解析;(2)12.
【解析】
(1)設(shè),過(guò)向作垂線交于,根據(jù)平行線成比例定理,結(jié)合勾股定理的逆定理、面面垂直的性質(zhì)定理、線面垂直的性質(zhì)定理和判定定理進(jìn)行證明即可;
(2)連接,過(guò)向作垂線交于,由(1)結(jié)合面面垂直的判定定理和性質(zhì)定理可以證明出即為到平面的距離,最后利用體積公式進(jìn)行求解即可.
(1)如圖,設(shè),過(guò)向作垂線交于,
在等腰梯形中,,所以,
由勾股定理得:,,
∵,,∴,∴.
∵,平面平面,平面平面,
∴平面,∴.
∵,∴平面.
(2)連接,由(1)知平面平面,過(guò)向作垂線交于,
∴平面,∴即為到平面的距離,
設(shè),∴,解得,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(l)設(shè),討論函數(shù)的單調(diào)性;
(2)若函數(shù)的圖象在上恒在軸的上方,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知離心率為的橢圓的左頂點(diǎn)為,左焦點(diǎn)為,及點(diǎn),且、、成等比數(shù)列.
(1)求橢圓的方程;
(2)斜率不為的動(dòng)直線過(guò)點(diǎn)且與橢圓相交于、兩點(diǎn),記,線段上的點(diǎn)滿(mǎn)足,試求(為坐標(biāo)原點(diǎn))面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】年以來(lái)精準(zhǔn)扶貧政策的落實(shí),使我國(guó)扶貧工作有了新進(jìn)展,貧困發(fā)生率由年底的下降到年底的,創(chuàng)造了人類(lèi)減貧史上的的中國(guó)奇跡.“貧困發(fā)生率”是指低于貧困線的人口占全體人口的比例,年至年我國(guó)貧困發(fā)生率的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
貧困發(fā)生率 | 10.2 | 8.5 | 7.2 | 5.7 | 4.5 | 3.1 | 1.4 |
(1)從表中所給的個(gè)貧困發(fā)生率數(shù)據(jù)中任選兩個(gè),求兩個(gè)都低于的概率;
(2)設(shè)年份代碼,利用線性回歸方程,分析年至年貧困發(fā)生率與年份代碼的相關(guān)情況,并預(yù)測(cè)年貧困發(fā)生率.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
(的值保留到小數(shù)點(diǎn)后三位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱(chēng)“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門(mén)課程相鄰排課,則“六藝”課程講座不同排課順序共有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有l000名員工,其中男性員工400名,采用分層抽樣的方法隨機(jī)抽取100名員工進(jìn)行5G手機(jī)購(gòu)買(mǎi)意向的調(diào)查,將計(jì)劃在今年購(gòu)買(mǎi)5G手機(jī)的員工稱(chēng)為“追光族”,計(jì)劃在明年及明年以后才購(gòu)買(mǎi)5G手機(jī)的員工稱(chēng)為“觀望者”調(diào)查結(jié)果發(fā)現(xiàn)抽取的這100名員工中屬于“追光族”的女性員工和男性員工各有20人.
(Ⅰ)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為該公司員工屬于“追光族”與“性別”有關(guān);
屬于“追光族” | 屬于“觀望者” | 合計(jì) | |
女性員工 | |||
男性員工 | |||
合計(jì) | 100 |
(Ⅱ)已知被抽取的這l00名員工中有6名是人事部的員工,這6名中有3名屬于“追光族”現(xiàn)從這6名中隨機(jī)抽取3名,求抽取到的3名中恰有1名屬于“追光族”的概率.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019新型冠狀病譯(2019-nCoV)于2020年1月12日被世界衛(wèi)生組織命名.冠狀病毒是一個(gè)大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.某醫(yī)院對(duì)病患及家屬是否帶口罩進(jìn)行了調(diào)查,統(tǒng)計(jì)人數(shù)得到如下列聯(lián)表:
戴口罩 | 未戴口罩 | 總計(jì) | |
未感染 | 30 | 10 | 40 |
感染 | 4 | 6 | 10 |
總計(jì) | 34 | 16 | 50 |
(1)根據(jù)上表,判斷是否有95%的把握認(rèn)為未感染與戴口罩有關(guān);
(2)在上述感染者中,用分層抽樣的方法抽取5人,再在這5人中隨機(jī)抽取2人,求這2人都未戴口罩的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)有一塊農(nóng)田,如圖所示,它的邊界由圓O的一段圓弧(P為此圓弧的中點(diǎn))和線段MN構(gòu)成.已知圓O的半徑為40米,點(diǎn)P到MN的距離為50米.現(xiàn)規(guī)劃在此農(nóng)田上修建兩個(gè)溫室大棚,大棚Ⅰ內(nèi)的地塊形狀為矩形ABCD,大棚Ⅱ內(nèi)的地塊形狀為,要求均在線段上,均在圓弧上.設(shè)OC與MN所成的角為.
(1)用分別表示矩形和的面積,并確定的取值范圍;
(2)若大棚Ⅰ內(nèi)種植甲種蔬菜,大棚Ⅱ內(nèi)種植乙種蔬菜,且甲、乙兩種蔬菜的單位面積年產(chǎn)值之比為.求當(dāng)為何值時(shí),能使甲、乙兩種蔬菜的年總產(chǎn)值最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,點(diǎn)、、均在橢圓上,,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求外接圓的半徑的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com