在圖的正方形中隨機(jī)撒一把芝麻,用隨機(jī)模擬的方法估計(jì)圓周率π的值.如果撒了1000個(gè)芝麻,落在圓內(nèi)的芝麻總數(shù)是781顆,那么這次模擬中π的估計(jì)值是
 
.(精確到0.001)
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:設(shè)出正方形的邊長,從而得到圓的半徑,寫出正方形和圓的面積,根據(jù)芝麻落在圓內(nèi)的概率等于圓的面積除以正方形的面積,列出一個(gè)關(guān)于π的關(guān)系式,做出π的估計(jì)值.
解答: 解:假設(shè)正方形的邊長是2,則正方形的面積是4,
圓的半徑是1,則圓的面積是π,
根據(jù)幾何概型的概率公式當(dāng)?shù)玫?span id="bokkmrb" class="MathJye">
781
1000
=
π
4
,
∴π=3.124
故答案為:3.124.
點(diǎn)評:本題考查模擬方法估計(jì)概率,考查幾何概型,考查利用實(shí)際操作驗(yàn)證數(shù)學(xué)中常用的π的值,是一個(gè)比較好的題目,希望引起同學(xué)們重視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域?yàn)閇λm,λn],則稱f(x)為“λ倍函數(shù)”.
(Ⅰ)若函數(shù)f(x)=x3為“1倍函數(shù)”,求符合條件的區(qū)間[m,n].
(Ⅱ)若函數(shù)f(x)=k+
x+2
為“1倍函數(shù)”,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
3+2i
2-3i
的共軛復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q=
1
2
,前n項(xiàng)和為Sn,則
S4
a2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x滿足對任意正數(shù)a,均有a>x2-1,則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,給出以下結(jié)論:
①DB1⊥平面ACD1
②AD1∥平面BCC1;
③AD⊥平面D1DB;
④平面ACD1⊥平面B1D1D;
⑤AB與DB1所成的角為45°.
其中所有正確結(jié)論的序號為
 
(請把正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8名同學(xué)爭奪3項(xiàng)冠軍,獲得冠軍的可能性有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱A1B1C1-ABC中,底面ABC為直角三角形,∠BAC=
π
2
,AB=AC=AA1=1.已知G與E分別為A1B1和CC1的中點(diǎn),D與F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)).若GD⊥EF,則線段DF的長度的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|
a
|=|
b
|=|
a
-
b
|=1,則|
a
+
b
|=
 

查看答案和解析>>

同步練習(xí)冊答案