在學(xué)習(xí)完統(tǒng)計(jì)學(xué)知識(shí)后,兩位同學(xué)對(duì)所在年級(jí)的1200名同學(xué)一次數(shù)學(xué)考試成績(jī)作抽樣調(diào)查,兩位同學(xué)采用簡(jiǎn)單隨機(jī)抽樣方法抽取100名學(xué)生的成績(jī),并將所選的數(shù)學(xué)成績(jī)制成如統(tǒng)計(jì)表,設(shè)本次考試的最低期望分?jǐn)?shù)為90分,優(yōu)等生最低分130分,并且考試成績(jī)分?jǐn)?shù)在[85,90)的學(xué)生通過(guò)自身努力能達(dá)到最低期望分?jǐn)?shù).
(Ⅰ)求出各分?jǐn)?shù)段的頻率并作出頻率分布直方圖;
(Ⅱ)用所抽學(xué)生的成績(jī)?cè)诟鱾(gè)分?jǐn)?shù)段的頻率表示概率,請(qǐng)估計(jì)該校學(xué)生數(shù)學(xué)成績(jī)達(dá)到最低期望的學(xué)生分?jǐn)?shù)和優(yōu)等生人數(shù);
(Ⅲ)設(shè)考試成績(jī)?cè)赱85,90)的學(xué)生成績(jī)?nèi)缦拢?0,81,83,84,86,89,從分?jǐn)?shù)在[85,90)的學(xué)生中抽取2人出來(lái)檢查數(shù)學(xué)知識(shí)的掌握情況,記所抽取學(xué)生中通過(guò)自身努力達(dá)到最低期望分?jǐn)?shù)的人數(shù)為ξ,求ξ的分布列和期望.
分?jǐn)?shù)段 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 9 6 12 18 21 16 12 6
頻率
考點(diǎn):離散型隨機(jī)變量的期望與方差,頻率分布直方圖
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(Ⅰ)利用各分?jǐn)?shù)段的人數(shù)除以100,可得各分?jǐn)?shù)段的頻率,從而可得頻率分布直方圖;
(Ⅱ)由(Ⅰ)可知達(dá)到最低期望的頻率為0.85,優(yōu)等生的頻率為0.18,從而可求該校學(xué)生數(shù)學(xué)成績(jī)達(dá)到最低期望的學(xué)生分?jǐn)?shù)和優(yōu)等生人數(shù);
(Ⅲ)ξ的可能取值為0,1,2,分別求出P(ξ=0),P(ξ=1),P(ξ=2).由此能求出ξ的分布列及數(shù)學(xué)期望Eξ.
解答: 解:(Ⅰ)利用各分?jǐn)?shù)段的人數(shù)除以100,可得各分?jǐn)?shù)段的頻率.
分?jǐn)?shù)段 [70,80) [80,90) [90,100) [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 9 6 12 18 21 16 12 6
頻率 0.09 0.06 0.12 0.18 0.21 0.16 0.12 0.06
頻率分布直方圖,如圖所示
;
(Ⅱ)由(Ⅰ)可知達(dá)到最低期望的頻率為0.85,優(yōu)等生的頻率為0.18,
∴最低期望的學(xué)生為1200×0.85=1020,優(yōu)等生人數(shù)為1200×0.18=216;
(Ⅲ)ξ的所有可能取值為0,1,2,則
P(ξ=0)=
C
0
2
C
2
4
C
2
6
=
2
5
,P(ξ=1)=
C
1
2
C
1
4
C
2
6
=
8
15
,P(ξ=2)=
C
2
2
C
0
4
C
2
6
=
1
15

∴ξ的分布列為:
ξ 0 1 2
P
2
5
8
15
1
15
…(8分)
E(ξ)=0×
2
5
+1×
8
15
+2×
1
15
=
2
3
.…(12分)
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,考查概率的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,注意頻率分布直方圖的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是⊙O的直徑,弦CD交AB于點(diǎn)P,PA=2,PC=6,PD=4,則AB等于( 。
A、3B、8C、12D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)p(x,y)(x≥0)滿(mǎn)足:點(diǎn)p到定點(diǎn)F(
1
2
,0)與到y(tǒng)軸的距離之差為
1
2
.記動(dòng)點(diǎn)p的軌跡為曲線C.
(1)求曲線C的軌跡方程;
(2)過(guò)點(diǎn)F的直線交曲線C于A、B兩點(diǎn),過(guò)點(diǎn)A和原點(diǎn)O的直線交直線x=-
1
2
于點(diǎn)D,求證:直線DB平行于x軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)Q(4,1)作拋物線y2=8x的弦AB,恰被Q平分.
(1)求AB所在的直線方程.
(2)求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知雙曲線
x2
a2
-
y2
b2
=1,A、B為雙曲線的兩個(gè)頂點(diǎn).
(1)當(dāng)a=2,b=
3
,直線l:y=x-4與雙曲線交于C、D兩點(diǎn),求線段CD的長(zhǎng)度;
(2)在x軸上是否存在這樣一個(gè)定點(diǎn)M(λ,0),過(guò)M的直線與雙曲線有兩個(gè)交點(diǎn)C、D,并且無(wú)論怎么旋轉(zhuǎn)直線CD(在保證直線和雙曲線有兩個(gè)交點(diǎn)的前提下),始終CA⊥AD.如果存在,請(qǐng)求出λ的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),P是橢圓E上的點(diǎn),以F1P為直徑的圓經(jīng)過(guò)F2,
PF1
PF2
=
1
16
a2
.直線l經(jīng)過(guò)F1,與橢圓E交于A、B兩點(diǎn),F(xiàn)2與A、B兩點(diǎn)構(gòu)成△ABF2
(1)求橢圓E的離心率;
(2)設(shè)△F1PF2的周長(zhǎng)為2+
3
,求△ABF2的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱錐P-ABCD的底面是邊長(zhǎng)為2的菱形,∠DAB=60°,側(cè)棱PA=PC=2
3
,PB=
10
.M,N兩點(diǎn)分別在側(cè)棱PB,PD上,
|PM|
|MB|
=
|PN|
|ND|
=2
(1)求證:PA⊥平面MNC.
(2)求平面NPC與平面MNC的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在幾何體ABCDE中,AB=AD=BC=DC=2,AE=2
2
,AB⊥AD,且AE⊥平面ABD,平面CBD⊥平面ABD.
(Ⅰ)求證:AB∥平面CDE;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題:
①圓2x2+2y2=1與直線xsinθ+y-1=0(θ∈R,θ≠
π
2
+kπ,k∈z)相交;
②過(guò)拋物線y2=4x的焦點(diǎn)作直線,交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),如果x1+x2=6,那么|AB|=8
③已知A(-1,0),B(1,0),動(dòng)點(diǎn)C滿(mǎn)足|CA|+|CB|=2,則C點(diǎn)的軌跡是橢圓;
其中正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案