【題目】如圖所示,四棱錐中,底面為正方形, 平面, ,點分別為的中點.

(1)求證: ;

(2)求二面角的余弦值.

【答案】1)證明略;

2

【解析】1)證法1平面, 平面,

為正方形,

,平面……………………………………………3

平面,

,…………………………………………………………6

證法2:以為原點,建立如圖所示的空間直角坐標系,則, , ………4

,………6

2)解法1:以為原點,建立如圖所示的空間直角坐標系

, , ,

,……………8

設平面DFG的法向量為

,得是平面的一個法向量.…………………………10

設平面EFG的法向量為,

,得是平面的一個法向量.……………………………12

設二面角的平面角為θ,則

所以二面角的余弦值為………………………………………14

解法2:以為原點,建立如圖所示的空間直角坐標系,W

, , ,

, ………………………………8

的垂線,垂足為

三點共線,,

,

,解得

………………………………………………10

再過的垂線,垂足為,

三點共線,,

,

,解得

……………………………………………12

所成的角就是二面角的平面角,

所以二面角的余弦值為………………………………………14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】新個稅法于2019年1月1日進行實施.為了調查國企員工對新個稅法的滿意程度,研究人員在地各個國企中隨機抽取了1000名員工進行調查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中.

(Ⅰ)估計被調查的員工的滿意程度的中位數(shù);(計算結果保留兩位小數(shù))

(Ⅱ)若按照分層抽樣從,中隨機抽取8人,再從這8人中隨機抽取4人,記分數(shù)在的人數(shù)為,求的分布列與數(shù)學期望;

(Ⅲ)以頻率估計概率,若該研究人員從全國國企員工中隨機抽取人作調查,記成績在,的人數(shù)為,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知半圓,、分別為半圓軸的左、右交點,直線過點且與軸垂直,點在直線上,縱坐標為,若在半圓上存在點使,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)袋中裝有黑色球和白色球共7個,從中任取2個球都是白色球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸出1個球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后終止.每個球在每一次被摸出的機會都是等可能的,用X表示摸球終止時所需摸球的次數(shù).

(1)求隨機變量X的分布列和均值E(X);

(2)求甲摸到白色球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記無窮數(shù)列的前項中最大值為,最小值為,令

(1)若,寫出,的值;

(2)設,若,求的值及時數(shù)列的前項和

(3)求證:“數(shù)列是等差數(shù)列”的充要條件是“數(shù)列是等差數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知U=RA={x|a2x2-5ax-6<0},B{x||x-2|≥1}.

1)若a=1,求(UAB;

2)求不等式a2x2-5ax-6<0aR)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,,分別為線段、上一點,且.

(1)證明:;

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.

(1)求證:AD⊥PB;

(2)求點C到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質.

1)若具有性質,且, ,求

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質,并說明理由;

3)設是無窮數(shù)列,已知.求證:對任意都具有性質的充要條件為是常數(shù)列”.

查看答案和解析>>

同步練習冊答案