【題目】某地高中年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知這些學(xué)生的原始成績均分布在內(nèi),發(fā)布成績使用等級制,各等級劃分標準見下表,并規(guī)定: 三級為合格, 級為不合格
為了了解該地高中年級學(xué)生身體素質(zhì)情況,從中抽取了名學(xué)生的原始成績作為樣本進行統(tǒng)計,按照分組作出頻率分布直方圖如圖所示,樣本中分數(shù)在分及以上的所有數(shù)據(jù)的莖葉圖如圖所示.
(Ⅰ) 求及頻率分布直方圖中的值;
(Ⅱ) 根據(jù)統(tǒng)計思想方法,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該地高中學(xué)生中任選人,求至少有人成績是合格等級的概率;
(Ⅲ)上述容量為的樣本中,從兩個等級的學(xué)生中隨機抽取了名學(xué)生進行調(diào)研,記為所抽取的名學(xué)生中成績?yōu)?/span>等級的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ) ;(Ⅲ)見解析.
【解析】試題分析:(Ⅰ)根據(jù)頻率分布直方圖和樹形圖求解;(Ⅱ)至少有一人可從反面出發(fā),用間接法求解;(Ⅲ)根據(jù)分布列的定義和數(shù)學(xué)期望的計算方法求解即可.
試題解析:(Ⅰ)由題意知,樣本容量
(Ⅱ)樣本中成績是合格等級的人數(shù)為,成績是合格等級的頻率為,故從該校學(xué)生中任選人,成績是合格等級的概率為,用表示事件“從該地高中學(xué)生中任選人,至少有人成績是合格等級,則”
(Ⅲ)樣本中等級的學(xué)生人數(shù)為人, 等級的學(xué)生人數(shù)為人,故隨機變量的所有取值
于是隨機變量的分布列為
所以,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇圓滿落幕了,相關(guān)話題在網(wǎng)絡(luò)上引起了網(wǎng)友們的高度關(guān)注,為此,21財經(jīng)APP聯(lián)合UC推出“一帶一路”大數(shù)據(jù)微報告,在全國抽取的70千萬網(wǎng)民中(其中為高學(xué)歷)有20千萬人對此關(guān)注(其中為高學(xué)歷).
(1)根據(jù)以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表;
(2)根據(jù)列聯(lián)表,用獨立性檢驗的方法分析,能否有的把握認為“一帶一路”的關(guān)注度與學(xué)歷有關(guān)系?
高學(xué)歷(千萬人) | 不是高學(xué)歷(千萬人) | 合計 | |
關(guān)注 | |||
不關(guān)注 | |||
合計 |
參考公式: 統(tǒng)計量的表達式是,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人做定點投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為,甲投籃3次均未命中的概率為,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設(shè)兩人命中的總次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)當時,求曲線在點處的切線方程;
(2)討論函數(shù)的單調(diào)性;
(3)當,且時證明不等式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求函數(shù)的極值;
(Ⅱ)當時,若存在實數(shù)使得不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究性學(xué)習(xí)小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于25”的概率;
(2)請根據(jù)3月2日至3月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)所得的線性回歸方程是否可靠?
(參考公式:回歸直線方程為,其中, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,部分對應(yīng)值如下表,又知的導(dǎo)函數(shù)的圖象如下圖所示:
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
則下列關(guān)于的命題:
①函數(shù)的極大值點為2;
②函數(shù)在上是減函數(shù);
③如果當時, 的最大值是2,那么的最大值為4;
④當,函數(shù)有4個零點.
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (為實常數(shù)).
(1)若, ,求的單調(diào)區(qū)間;
(2)若,且,求函數(shù)在上的最小值及相應(yīng)的值;
(3)設(shè),若存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com