【題目】設(shè)坐標(biāo)原點(diǎn)為O,過點(diǎn)P(x0y0)做圓O:x2+y2=2的切線,切點(diǎn)為Q,

(1)求|OP|的值;

(2)已知點(diǎn)A(1,0)、B(0,1),點(diǎn)W(x,y)滿足 求點(diǎn)W的軌跡方程.

【答案】(1)|OP|=2;(2)點(diǎn)W的軌跡方程為(x﹣1)2+(y﹣1)2=4.

【解析】試題分析:1PQ與圓相切,∴PQOQ,根據(jù)勾股定理即可得出|OP|的值;(2)設(shè)Wxy),根據(jù)得出x,yx0,y0的關(guān)系,由(1)可知|OP|=2,從而得出W的軌跡方程.

試題解析:

(1)∵PQ與圓相切,

∴PQ⊥OQ,

又|OQ|=|PQ|=,

∴|OP|=2.

(2)設(shè)W(x,y),則=(x,y﹣1),

=(x0+1,y0),

∴x0=x﹣1,y0=y﹣1.

由(1)可知|OP|=2,

∴(x﹣1)2+(y﹣1)2=4.

即點(diǎn)W的軌跡方程為(x﹣1)2+(y﹣1)2=4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過P4,-2),Q-1,3)兩點(diǎn),且圓心在x軸上。

1)求直線PQ的方程;

2)圓C的方程;

3)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面 , , 分別為, 的中點(diǎn),點(diǎn)在線段上.

(1)求證: 平面;

(2)如果三棱錐的體積為,求點(diǎn)到面的距離.

【答案】(1)證明見解析;(2)

【解析】試題分析:

(1)在平行四邊形中,得出,進(jìn)而得到,證得底面,得出,進(jìn)而證得平面

(2)由到面的距離為,所以 中點(diǎn),即可求解的值.

試題解析:

證明:(1)在平行四邊形中,因?yàn)?/span> ,

所以,由, 分別為, 的中點(diǎn),得,所以

側(cè)面底面,且 底面

又因?yàn)?/span>底面,所以

又因?yàn)?/span>, 平面 平面,

所以平面

解:(2)到面的距離為1,所以, 中點(diǎn),

型】解答
結(jié)束】
21

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)求函數(shù)的極值;

(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸之間滿足關(guān)系式為大于的常數(shù)),現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

對(duì)數(shù)據(jù)作了處理,相關(guān)統(tǒng)計(jì)量的值如下表:

(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程(提示:由已知, 的線性關(guān)系);

(2)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品,現(xiàn)從抽取的6件合格產(chǎn)品再任選3件,求恰好取得兩件優(yōu)等品的概率;

(附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知△ABC中,∠ACB=90°,SA⊥平面ABCADSC,求證:AD⊥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校高三畢業(yè)生報(bào)考體育專業(yè)學(xué)生的體重(單位:千克)情況,將他們的體重?cái)?shù)據(jù)整理后得到如下頻率分布直方圖,已知圖中從左至右前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.

(Ⅰ)求該校報(bào)考體育專業(yè)學(xué)生的總?cè)藬?shù);

(Ⅱ)已知A, 是該校報(bào)考體育專業(yè)的兩名學(xué)生,A的體重小于55千克, 的體重不小于70千克,現(xiàn)從該校報(bào)考體育專業(yè)的學(xué)生中按分層抽樣分別抽取體重小于55千克和不小于70千克的學(xué)生共6名,然后再?gòu)倪@6人中抽取體重小于55千克學(xué)生1人,體重不小于70千克的學(xué)生2人組成3人訓(xùn)練組,求A不在訓(xùn)練組且在訓(xùn)練組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上,,,

(1)求的值;

(2)若的面積是,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,的中點(diǎn),上任意一點(diǎn),,上任意兩點(diǎn),且的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是( )

A. 點(diǎn)到平面的距離B. 三棱錐的體積

C. 直線與平面所成的角D. 二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分13分)

已知函數(shù),(其中),其部分圖像如圖所示.

I)求的解析式;

II)求函數(shù)在區(qū)間上的最大值及相應(yīng)的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案