設(shè)a=,b=(4sinx,cosx-sinx),f(x)=a·b.
(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;
(3)設(shè)集合A=,B={x||f(x)-m|<2},若AB,求實數(shù)m的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=sin2ωx+sinωxsin(ω>0)的最小正周期為.
(1)寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知f(x)=cos(ωx+φ)的最小正周期為π,且f=.
(1)求ω和φ的值;
(2)在給定坐標系中作出函數(shù)f(x)在[0,π]上的圖象;
(3)若f(x)>,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=2sin(2ωx+φ)(ω>0,φ∈(0,π))的圖象中相鄰兩條對稱軸間的距離為,且點是它的一個對稱中心.
(1)求f(x)的表達式;
(2)若f(ax)(a>0)在上是單調(diào)遞減函數(shù),求a的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α<x<π.
(1)若α=,求函數(shù)f(x)=b·c的最小值及相應x的值;
(2)若a與b的夾角為,且a⊥c,求tan 2α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當時,的最大值為2,求的值,并求出的對稱軸方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
函數(shù)f(x)=sinsin+sinxcosx(x∈R).
(1)求f的值;
(2)在△ABC中,若f=1,求sinB+sinC的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com