【題目】已知等差數(shù)列{an}中,首項為a1(a1≠0),公差為d,前n項和為Sn , 且滿足a1S5+15=0,則實數(shù)d的取值范圍是

【答案】(﹣∞,﹣ ]∪[ ,+∞)
【解析】解:∵等差數(shù)列{an}中,首項為a1(a1≠0),公差為d,
前n項和為Sn , 且滿足a1S5+15=0,
+15=0,
+10a1d+15=0,
∴d=﹣ a1 ,
當(dāng)a1>0時,d=﹣ a1≤﹣2 =﹣ ,
當(dāng)a1<0時,d=﹣ a1≥2 =
∴實數(shù)d的取值范圍是(﹣∞,﹣ ]∪[ ,+∞).
所以答案是:(﹣∞,﹣ ]∪[ ,+∞).
【考點精析】通過靈活運用等差數(shù)列的前n項和公式,掌握前n項和公式:即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ax﹣1,(a為實數(shù)),g(x)=lnx﹣x
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)g(x)的極值;
(3)求證:lnx<x<ex(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=2an﹣3(﹣1)n(n∈N*).
(1)若bn=a2n﹣1,求證:bn+1=4bn;
(2)求數(shù)列{an}的通項公式;
(3)若a1+2a2+3a3+…+nan>λ2n對一切正整數(shù)n恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠PAQ是村里一個小湖的一角,其中∠PAQ=60°.為了給村民營造豐富的休閑環(huán)境,村委會決定在直線湖岸AP與AQ上分別建觀光長廊AB與AC,其中AB是寬長廊,造價是800元/米;AC是窄長廊,造價是400元/米;兩段長廊的總造價預(yù)算為12萬元(恰好都用完);同時,在線段BC上靠近點B的三等分點D處建一個表演舞臺,并建水上通道AD(表演舞臺的大小忽略不計),水上通道的造價是600元/米.

(1)若規(guī)劃寬長廊AB與窄長廊AC的長度相等,則水上通道AD的總造價需多少萬元?
(2)如何設(shè)計才能使得水上通道AD的總造價最低?最低總造價是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣kx+2,k∈R.
(1)若k=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)<2在R+上恒成立,求k的取值范圍;
(3)若x1>0,x2>0,x1+x2<ex1x2 , 求證x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;

(II)若函數(shù)在區(qū)間內(nèi)無零點,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠為了解甲、乙兩條生產(chǎn)線生產(chǎn)的產(chǎn)品的質(zhì)量,從兩條生產(chǎn)線生產(chǎn)的產(chǎn)品中隨機抽取各10件,測量產(chǎn)品中某種元素的含量(單位:毫克).如圖是測量數(shù)據(jù)的莖葉圖:
規(guī)定:當(dāng)產(chǎn)品中的此種元素含量滿足≥18毫克時,該產(chǎn)品為優(yōu)等品.

(1)根據(jù)樣本數(shù)據(jù),計算甲、乙兩條生產(chǎn)線產(chǎn)品質(zhì)量的均值與方差,并說明哪條生產(chǎn)線的產(chǎn)品的質(zhì)量相對穩(wěn)定;
(2)從乙廠抽出的上述10件產(chǎn)品中,隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , a1= ,且對于任意正整數(shù)m,n都有an+m=anam . 若Sn<a對任意n∈N*恒成立,則實數(shù)a的最小值是

查看答案和解析>>

同步練習(xí)冊答案