|
|
已知集合M={2,3,4},N={0,2,3,5},則M∩N=
|
[ ] |
A. |
{0,2}
|
B. |
{2,3}
|
C. |
{3,4}
|
D. |
{3,5}
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知集合A=﹛-2,0,2﹜,B=﹛x|x2-x-2=0﹜,則A∩B=
|
[ ] |
A. |
|
B. |
{2}
|
C. |
{0}
|
D. |
{-2}
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,四棱錐p-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知二面角α-l-β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=10,a2為整數(shù),且Sn≤S4.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為
|
[ ] |
A. |
50
|
B. |
40
|
C. |
25
|
D. |
20
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
等比數(shù)列{an}的各項(xiàng)均為正數(shù)且a1a5=4,則log2a1+log2a2+log2a3+log2a4+log2a5=________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
不等式|x-1|+|x+2|≥5的解集為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù)則下列結(jié)論正確的是
|
[ ] |
A. |
(fx)是偶函數(shù)
|
B. |
f(x)是增函數(shù)
|
C. |
f(x)是周期函數(shù)
|
D. |
f(x)的值域?yàn)閇-1,+∞)
|
|
|
查看答案和解析>>