【題目】已知四邊形ABCD滿足AD∥BC,BA=AD=DC=BC=a,E是BC的中點(diǎn),將△BAE沿AE折起到△B1AE的位置,使平面B1AE⊥平面AECD,F(xiàn)為B1D的中點(diǎn).
(1)證明:B1E∥平面ACF;
(2)求平面ADB1與平面ECB1所成銳二面角的余弦值.

【答案】證明:(1)連結(jié)ED交AC于O,連結(jié)OF,
因?yàn)锳ECD為菱形,OE=OD,
所以FO∥B1E,
所以B1E∥平面ACF.
(2)取AE的中點(diǎn)M,連結(jié)B1M,連結(jié)MD,則∠AMD=90°,
分別以ME,MD,MB1為x,y,z軸建系,
則E(,0,0),C(a,a,0),A(﹣,0,0),D(0,a,0),
B1(0,0,a),
=(﹣,0,a),=(,a,0),=(,0,a),
設(shè)面ECB1的法向量為=(x,y,z),
,令x=1,則=(1,﹣,),
同理面ADB1的法向量為=(1,﹣,﹣
所以cos<,>==
故平面ADB1與平面ECB1所成銳二面角的余弦值為

【解析】(1)根據(jù)線面平行的判定定理即可證明:B1E∥平面ACF;
(2)建立空間坐標(biāo)系,求出平面的法向量,利用向量法即可得到結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下結(jié)論,其中正確結(jié)論的個(gè)數(shù)為( )

①函數(shù)的零點(diǎn)為,則函數(shù)的圖象經(jīng)過點(diǎn)時(shí),函數(shù)值一定變號(hào).

②相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào).

③函數(shù)在區(qū)間上連續(xù),若滿足,則方程在區(qū)間上一定有實(shí)根.

④“二分法”對(duì)連續(xù)不斷的函數(shù)的所有零點(diǎn)都有效.

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱ABCD-A1B1C1D1中,,平面BB1C1C底面ABCD,點(diǎn)、F分別是線段、BC的中點(diǎn).

(1)求證:AF//平面;

(2)求證:平面BB1C1C⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年10月19日,由中國工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實(shí))產(chǎn)業(yè)大會(huì)在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項(xiàng)目.現(xiàn)某廠商抓住商機(jī)在去年用450萬元購進(jìn)一批VR設(shè)備,經(jīng)調(diào)試后今年投入使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用22萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬元,該設(shè)備使用后,每年的總收入為180萬元,設(shè)使用x年后設(shè)備的盈利額為y萬元.

(1)寫出yx之間的函數(shù)關(guān)系式;

(2)使用若干年后,當(dāng)年平均盈利額達(dá)到最大值時(shí),求該廠商的盈利額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ab為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:

當(dāng)直線ABa60°角時(shí),ABb30°角;

當(dāng)直線ABa60°角時(shí),ABb60°角;

直線ABa所成角的最小值為45°;

直線ABa所成角的最大值為60°.

其中正確的是________.(填寫所有正確結(jié)論的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位.若直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(I)求直線的普通方程與曲線的直角坐標(biāo)方程;

(II)設(shè)直線與曲線相交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遼寧號(hào)航母紀(jì)念章從2012105日起開始上市,通過市場調(diào)查,得到該紀(jì)念章每枚的市場價(jià)(單位:元)與上市時(shí)間(單位:天)的數(shù)據(jù)如下:

上市時(shí)間

市場價(jià)

(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述遼寧號(hào)航母紀(jì)念章的市場價(jià)與上市時(shí)間的變化關(guān)系:①;②;③;

(2)利用你選取的函數(shù),求遼寧號(hào)航母紀(jì)念章市場價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格;

(3)設(shè)你選取的函數(shù)為,若對(duì)任意實(shí)數(shù),關(guān)于的方程恒有個(gè)想異實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其圖像的一個(gè)對(duì)稱中心是的圖像向左平移個(gè)單位長度后得到函數(shù)的圖像。

(1)求函數(shù)的解析式;

(2)若對(duì)任意當(dāng)時(shí),都有求實(shí)數(shù)的最大值;

(3)若對(duì)任意實(shí)數(shù)上與直線的交點(diǎn)個(gè)數(shù)不少于6個(gè)且不多于10個(gè),求正實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案