已知函數(shù)在上是減函數(shù),在上是增函數(shù),函數(shù)在上有三個零點,且是其中一個零點.
(1)求的值;
(2)求的取值范圍;
(3)設,且的解集為,求實數(shù)的取值范圍.
(1),(2),(3)
解析試題分析:(1)函數(shù)在處單調(diào)性發(fā)生變化,所以,由得.(2)因為,所以,因此因為函數(shù)在上有三個零點,所以必有兩個不等的根,.又在上是增函數(shù),所以大根不小于1,即,,故的取值范圍為.(3)已知不等式解集求參數(shù)取值范圍,有兩個解題思路,一是解不等式,根據(jù)解集包含關(guān)系對應參數(shù)取值范圍.二是轉(zhuǎn)化,將不等式在區(qū)間有解理解為恒成立問題,利用函數(shù)最值解決參數(shù)取值范圍.本題由于已知是其中一個零點,所以兩個方法都簡便.否則應利用變量分離求最值法.
試題解析:(1)∵f(x)=-x3+ax2+bx+c,∴. 1分
∵f(x)在上是減函數(shù),在上是增函數(shù),
∴當時,取到極小值,即.∴. 3分
(2)由(1)知,,
∵是函數(shù)的一個零點,即,∴. 5分
∵的兩個根分別為,.
又∵在上是增函數(shù),且函數(shù)在上有三個零點,
∴,即. 7分
∴.
故的取值范圍為. 9分
(3)解法1:由(2)知,且.
∵是函數(shù)的一個零點,∴,
∵,∴,
∴點是函數(shù)和函數(shù)的圖像的一個交點. 10分
結(jié)合函數(shù)和函數(shù)的圖像及其增減特征可知,當且僅當函數(shù)和函數(shù)的圖像只有一個交點時,的解集為.
即方程組①只有一組解: 11分
由,得.
即.
即
科目:高中數(shù)學 來源: 題型:解答題
已知某工廠生產(chǎn)件產(chǎn)品的成本為(元),
問:(1)要使平均成本最低,應生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤最大,應生產(chǎn)多少件產(chǎn)品?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),(其中為常數(shù)).
(1)如果函數(shù)和有相同的極值點,求的值;
(2)設,問是否存在,使得,若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.
(3)記函數(shù),若函數(shù)有5個不同的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
經(jīng)銷商用一輛型卡車將某種水果運送(滿載)到相距400km的水果批發(fā)市場.據(jù)測算,型卡車滿載行駛時,每100km所消耗的燃油量(單位:)與速度(單位:km/h)的關(guān)系近似地滿足,除燃油費外,人工工資、車損等其他費用平均每小時300元.已知燃油價格為7.5元/L.
(1)設運送這車水果的費用為(元)(不計返程費用),將表示成速度的函數(shù)關(guān)系式;
(2)卡車該以怎樣的速度行駛,才能使運送這車水果的費用最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)當時,求函數(shù)的極值;
(2)若函數(shù)在區(qū)間上是減函數(shù),求實數(shù)的取值范圍;
(3)當時,函數(shù)圖像上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com