【題目】在區(qū)間(﹣2,a)(a>0)上任取一個數(shù)m,若函數(shù)f(x)=3x+m﹣3 在區(qū)間[1,+∞)無零點的概率不小于 ,則實數(shù)a能取的最小整數(shù)是( )
A.1
B.3
C.5
D.6
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)m∈R,函數(shù)f(x)=ex﹣m(x+1) m2(其中e為自然對數(shù)的底數(shù))
(Ⅰ)若m=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知實數(shù)x1 , x2滿足x1+x2=1,對任意的m<0,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,求x1的取值范圍;
(Ⅲ)若函數(shù)f(x)有一個極小值點為x0 , 求證f(x0)>﹣3,(參考數(shù)據(jù)ln6≈1.79)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數(shù)y=f(x)g(x)的奇偶性;
(2)當b=0時,判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說明理由;
(3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人從1,2,…,15這15個數(shù)中,依次任取一個數(shù)(不放回).則在已知甲取到的數(shù)是5的倍數(shù)的情況下,甲所取的數(shù)大于乙所取的數(shù)的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐C﹣OAB中,CO⊥平面AOB,OA=OB=2OC=2,AB=2 ,D為AB的中點.
(Ⅰ)求證:AB⊥平面COD;
(Ⅱ)若動點E滿足CE∥平面AOB,問:當AE=BE時,平面ACE與平面AOB所成的銳二面角是否為定值?若是,求出該銳二面角的余弦值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若f(log2a)+f(3 a)≥2f(﹣1),則實數(shù)a的取值范圍是( )
A.[2,4]
B.[ ,2]
C.[ ,4]
D.[ ,2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠今年擬舉行促銷活動,經(jīng)調(diào)查測算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費m(萬元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將今年該產(chǎn)品的利潤y(萬元)表示為年促銷費m(萬元)的函數(shù);
(2)求今年該產(chǎn)品利潤的最大值,此時促銷費為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地西紅柿從月日起開始上市.通過市場調(diào)查,得到西紅柿種植成本(就是每公斤西紅柿的種植成本,單位:元)與上市時間(單位:天)的數(shù)據(jù)如下表:
上市時間 | 50 | 110 | 250 |
種植成本 | 150 | 108 | 150 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個函數(shù)描述西紅柿種植成本與上市時間的變化關(guān)系:;;;,并求出函數(shù)解析式;
(2)利用你選取的函數(shù),求西紅柿種植成本最低時的上市天數(shù)及最低種植成本.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】濮陽市黃河灘區(qū)某村2010年至2016年人均純收入(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2010年至2016年該村人均純收入的變化情況,并預測該村2017年人均純收入.
附:回歸直線的斜率和截距的最小乘法估計公式分別為: = , = ﹣ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com