已知函數(shù)f(x)定義域是{x|x
k
2
,k∈Z,x∈R
},且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,當
1
2
<x<1
時:f(x)=3x
(1)判斷f(x)的奇偶性,并說明理由;
(2)求f(x)在(0,
1
2
)上的表達式;
(3)是否存在正整,使得x∈(2k+
1
2
,2k+1)時,log3f(x)>x2-kx-2k有解,并說明理由.
分析:(1)先根據(jù)f(x+1)=-
1
f(x)
,得到周期為2;再結(jié)合f(x)+f(2-x)=0即可判斷f(x)的奇偶性;
(2)任取x∈(0,
1
2
)⇒-x∈(-
1
2
,0)⇒1-x∈(
1
2
,1);再結(jié)合奇函數(shù)的性質(zhì)以及當
1
2
<x<1
時:f(x)=3x即可得到結(jié)論;
(3)先根據(jù)所求結(jié)論得到f(x)=f(x-2k)=3x-2k;把不等式轉(zhuǎn)化為x2-(k+1)x<0在x∈(2k+
1
2
,2k+1)上有解(k∈N+),得到(0,k+1)∩(2k+
1
2
,2k+1)≠∅,即可求出結(jié)論.
解答:解:(1)∵f(x+2)=f(x+1+1)=-
1
f(x+1)
=f(x),
所以f(x)的周期為2…(2分)
所以f(x)+f(2-x)=0⇒f(x)+f(-x)=0,
所以f(x)為奇函數(shù).…(4分)
(2)任取x∈(0,
1
2
)⇒-x∈(-
1
2
,0)⇒1-x∈(
1
2
,1).
∴f(x)=-f(-x)=
1
f(1-x)

∴f(x)=
1
31-x
=3x-1
.…(8分)
(3)任取x∈(2k+
1
2
,2k+1)⇒x-2k∈(
1
2
,1),
∴f(x)=f(x-2k)=3x-2k
∴l(xiāng)og3f(x)>x2-kx-2k有解
即x2-(k+1)x<0在x∈(2k+
1
2
,2k+1)上有解(k∈N+),
所以:(0,k+1)∩(2k+
1
2
,2k+1)≠∅,
故有k+1>2k+
1
2
,無解.
故不存在這樣的正整數(shù).…(12分)
點評:本題主要考查函數(shù)奇偶性的判斷.具備奇偶性的函數(shù),其定義域必關(guān)于原點對稱,再依據(jù)奇函數(shù)、偶函數(shù)的定義做出判斷.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義在(-1,1)上,對于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且當x<0時,f(x)>0.
(Ⅰ)驗證函數(shù)f(x)=ln
1-x
1+x
是否滿足這些條件;
(Ⅱ)判斷這樣的函數(shù)是否具有奇偶性和其單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義在R上,并且對于任意實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且x≠y時,f(x)≠f(y),x>0時,有f(x)>0.
(1)判斷f(x)的奇偶性;
(2)若f(1)=1,解關(guān)于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•連云港二模)已知函數(shù)f(x)定義在正整數(shù)集上,且對于任意的正整數(shù)x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,則f(2009)=
4018
4018

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當x,y∈(-1,1)時,恒有f(x)-f(y)=f(
x-y
1-xy
),又數(shù)列{an}滿足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)證明:f(x)在(-1,1)上為奇函數(shù);
(II)求f(an)關(guān)于n的函數(shù)解析式;
(III)令g(n)=f(an)且數(shù)列{an}滿足bn=
1
g(n)
,若對于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義在R上,對任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,則f(2013)=
 

查看答案和解析>>

同步練習冊答案