【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷函數(shù)的單調性并證明;

(2)若關于的不等式有解,求實數(shù)的取值范圍.

【答案】(1)(2)見解析(3)

【解析】試題分析:1為奇函數(shù)可知, ,即可得解;

(2)由遞增可知上為減函數(shù),對于任意實數(shù),不妨設,化簡判斷正負即可證得;

(3)不等式,等價于,即,原問題轉化為上有解,求解的最大值即可.

試題解析

解:(1)由為奇函數(shù)可知, ,解得.

(2)由遞增可知上為減函數(shù),

證明:對于任意實數(shù),不妨設,

遞增,且,∴,∴,

,故上為減函數(shù).

(3)關于的不等式

等價于,即,

因為,所以

原問題轉化為上有解,

在區(qū)間上為減函數(shù),

, 的值域為

,解得,

的取值范圍是.

點晴:本題屬于對函數(shù)單調性應用的考察,若函數(shù)在區(qū)間上單調遞增,則時,有,事實上,若,則,這與矛盾,類似地,若在區(qū)間上單調遞減,則當時有;據(jù)此可以解不等式,由函數(shù)值的大小,根據(jù)單調性就可以得自變量的大小關系.本題中可以利用對稱性數(shù)形結合即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中, , , 為線段的中點,將沿折起,使平面平面,得到幾何體.

(1)若分別為線段的中點,求證: 平面

(2)求證: 平面;

3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高二年級期末考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如下頻率分布表.根據(jù)相關信息回答下列問題:

(1)求a,b的值,并畫出頻率分布直方圖;
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;
(3)用分層抽樣的方法在分數(shù)在[60,80)內學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人的分數(shù)在[70,80)內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了普及環(huán)保知識,增強環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
(Ⅰ)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為環(huán)保知識成績優(yōu)秀與學生的文理分類有關.

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計

甲班

乙班

30

總計

60

(Ⅱ)現(xiàn)已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設隨機變量X表示A,B,C三人中獲得優(yōu)秀的人數(shù),求X的分布列及期望E(X).
附: ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種商品的市場需求量(萬件)、市場供應量(萬件)與市場價格(元/件)分別近似地滿足下列關系: , .當時的市場價格稱為市場平衡價格,此時的需求量稱為平衡需求量.

(1)求平衡價格和平衡需求量;

(2)若該商品的市場銷售量(萬件)是市場需求量和市場供應量兩者中的較小者,該商品的市場銷售額(萬元)等于市場銷售量與市場價格的乘積.

①當市場價格取何值時,市場銷售額取得最大值;

②當市場銷售額取得最大值時,為了使得此時的市場價格恰好是新的市場平衡價格,則政府應該對每件商品征稅多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有實根?如果有實根,請求出一個長度為的區(qū)間使;如果沒有,請說明理由(注:區(qū)間的長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù)

(Ⅰ)求值;

(Ⅱ)判斷并證明該函數(shù)在定義域上的單調性;

(Ⅲ)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

(Ⅳ)設關于的函數(shù)有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程.

(Ⅰ)若此方程表示圓,求的取值范圍;

(Ⅱ)若(Ⅰ)中的圓與直線相交于, 兩點,且為坐標原點),求

(Ⅲ)在(Ⅱ)的條件下,求以為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是一幾何體的平面展開圖,其中四邊形為正方形, , , 為全等的等邊三角形, 分別為的中點.在此幾何體中,下列結論中錯誤的為

A. 直線與直線共面 B. 直線與直線是異面直線

C. 平面平面 D. 與面的交線與平行

查看答案和解析>>

同步練習冊答案