已知點A(1,2),B(3,5),向量
=(x,6),若
∥
,則實數(shù)x的值為
.
考點:平行向量與共線向量,平面向量的坐標運算
專題:平面向量及應(yīng)用
分析:利用向量共線定理即可得出.
解答:
解:∵點A(1,2),B(3,5),∴
=(3,5)-(1,2)=(2,3).
∵
∥
,∴3x-2×6=0,解得x=4.
故答案為:4.
點評:本題考查了向量共線定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x+
+b,不等式xf(x)<0的解集為(1,3).
(Ⅰ)求實數(shù)a、b的值;
(Ⅱ)若關(guān)于x的方程f(2
x)-k•2
-x-k=0有兩個不相等的實數(shù)根,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知條件p:x2+12x+20≤0,條件q:1-m<x<1+m(m>0).
(1)求條件p中x的取值范圍;
(2)若¬p是q的必要不充分條件,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x2-4x+a+3,a∈R
(1)若函數(shù)y=f(x)在[-1,1]上存在零點,求a的取值范圍;
(2)設(shè)函數(shù)g(x)=bx+5-2b,b∈R,當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在平行四邊形ABCD中,AD=2AB=2,∠BAD=60°,M、N分別是對角線BD、AC上的點,AC、BD相交于點O,已知BM=
BO,ON=
OC.設(shè)向量
=
,
=
.
(1)試用
,
表示
;
(2)求
||.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)=(x
2+1)e
x,經(jīng)過點P(0,t)(t≠1)有且只有一條直線與曲線f(x)相切,則t的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知i是虛數(shù)單位,z=1+i,
為z的共軛復(fù)數(shù),則復(fù)數(shù)
在復(fù)平面上對應(yīng)的點的坐標為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
《九章算術(shù)》之后,人們進一步用等差數(shù)列求和公式來解決更多的問題,《張丘建算經(jīng)》卷上第22題為:“今有女善織,日益功疾,且從第2天起,每天比前一天多織相同量的布,若第一天織5尺布,現(xiàn)在一月(按30天計),共織390尺布”,則每天比前一天多織
尺布.(不作近似計算)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
號碼為1、2、3、4、5、6的六個大小相同的球,放入編號為1、2、3、4、5、6的六個盒子中,每個盒子只能放一個球,若3號球只能放在1號或2號盒子中,4號球不能放在4號盒子中,則不同的放法有
種(用數(shù)字作答).
查看答案和解析>>