精英家教網 > 高中數學 > 題目詳情
已知直線l:
1
1+a
x+(1-a2)y+a-1=0 (0<a<
1
2
)
與x軸、y軸分別交于A(m,0),B(0,n)兩點,試比較m與n的大小關系,并證明你的結論.
分析:對于直線l的方程,分別令x=0,y=0,即可得到n,m.利用“作差法”和二次函數的單調性即可得出.
解答:解:令x=0,則n=
1-a
1-a2
=
1
1+a
,
令y=0,則m=(1+a)(1-a)=1-a2
m-n=1-a2-
1
1+a
=
-a(a2+a-1)
1+a
=
-a[(a+
1
2
)
2
-
5
4
]
1+a
,
∵函數f(a)=(a+
1
2
)2-
5
4
a∈(0,
1
2
)
上單調遞增,
f(a)<f(
1
2
)<0

所以,m-n>0,m>n.
點評:熟練掌握“作差法”比較兩個數的大小、二次函數的單調性等是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
a1
=
1
1
,屬于特征值1的一個特征向量為
a2
=
3
-2
,求矩陣A.
(2)選修4-4:坐標與參數方程
以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為psin(θ-
π
3
)=6,圓C的參數方程為
x=10cosθ
y=10sinθ
,(θ為參數),求直線l被圓C截得的弦長.
(3)選修4-5:不等式選講
已知實數a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(A)4-2矩陣與變換
已知二階矩陣M的特征值是λ1=1,λ2=2,屬于λ1的一個特征向量是e1=
1
1
,屬于λ2的一個特征向量是e2=
-1
2
,點A對應的列向量是a=
1
4

(Ⅰ)設a=me1+ne2,求實數m,n的值.
(Ⅱ)求點A在M5作用下的點的坐標.

(B)4-2極坐標與參數方程
已知直線l的極坐標方程為ρsin(θ-
π
3
)=3
,曲線C的參數方程為
x=cosθ
y=3sinθ
,設P點是曲線C上的任意一點,求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l過點A(1,2),B(2,3),則直線l的斜率為
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l:kx-y-4k+1=0被圓C:x2+(y+1)2=25所截得的弦長為整數,則滿足條件的直線l有( 。

查看答案和解析>>

同步練習冊答案