已知F是雙曲線
的左焦點,A為右頂點,上下虛軸端點B、C,若FB交CA于D,且
,則此雙曲線的離心率為( ).
A .
B.
C.
D.
試題分析:如圖,由已知可得直線FB的方程為:
,直線AC的方程為:
,聯(lián)立前兩方程可得D點坐標為:
,因此有
,又
,所以有
,整理得
,又
,所以有:
即
,故
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知F
1,F(xiàn)
2為橢圓
+=1(a>b>0)的兩個焦點,過F
2作橢圓的弦AB,若△AF
1B的周長為16,橢圓的離心率
e=,則橢圓的方程為( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)F
1、F
2分別為橢圓C:
+
=1(a>0,b>0)的左、右焦點,橢圓上一點M滿足∠MF
1O=
,N為MF
1的中點且ON⊥MF
1,則橢圓的離心率為( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,A為橢圓
+=1(a>b>0)上的一個動點,弦AB、AC分別過焦點F
1、F
2,當AC垂直于x軸時,恰好有AF
1:AF
2=3:1.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)
=λ
1,
=λ
2.
①當A點恰為橢圓短軸的一個端點時,求λ
1+λ
2的值;
②當A點為該橢圓上的一個動點時,試判斷是λ
1+λ
2否為定值?若是,請證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
以拋物線
的焦點為頂點,頂點為中心,離心率為2的雙曲線方程是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在平面直角坐標系
中,已知中心在坐標原點的雙曲線
經(jīng)過點
,且它的右焦點
與拋物線
的焦點相同,則該雙曲線的標準方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過雙曲線
的左焦點
作圓
的兩條切線,切點分別為
、
,雙曲線左頂點為
,若
,則該雙曲線的離心率為( )
A. | B. | C.3 | D.2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線y
2=4x的準線與雙曲線
-y
2=1交于A、B兩點,點F是拋物線的焦點,若△FAB為直角三角形,則該雙曲線的離心率為( )
A.
B.
C.2 D.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若拋物線
的焦點與雙曲線
的右焦點重合,則p的值為( )
查看答案和解析>>