中,若已知三邊為連續(xù)正整數(shù),最大角為鈍角,

(1)求最大角;

(2)求以此最大角為內(nèi)角,夾此角兩邊之和為4的平行四邊形的最大面積.

 

【答案】

(1);(2).

【解析】

試題分析:(1)設(shè)三邊,

為鈍角,,

,,

或3,但時不能構(gòu)成三角形,應(yīng)舍去,

當(dāng)時,,;

(2)設(shè)角的兩邊分別為,

當(dāng)時,平行四邊形面積最大,

考點(diǎn):本題主要考查余弦定理及三角形面積公式。

點(diǎn)評:解法思路明確,直接套用公式求角,求面積。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,若已知三邊為連續(xù)正整數(shù),最大內(nèi)角為鈍角,
①求最大角的余弦值;  
②求以此最大角為內(nèi)角,夾此角兩邊之和為4的平行四邊形的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)必修五數(shù)學(xué)蘇教版 蘇教版 題型:044

在△ABC中,若已知三邊為連續(xù)正整數(shù),最大角為鈍角,

(1)求最大角;

(2)求以此最大角為內(nèi)角,夾此角兩邊之和為4的平行四邊形的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

△ABC中,若已知三邊為連續(xù)正整數(shù),最大內(nèi)角為鈍角,
①求最大角的余弦值; 
②求以此最大角為內(nèi)角,夾此角兩邊之和為4的平行四邊形的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC中,若已知三邊為連續(xù)正整數(shù),最大內(nèi)角為鈍角,
①求最大角的余弦值;  
②求以此最大角為內(nèi)角,夾此角兩邊之和為4的平行四邊形的最大面積.

查看答案和解析>>

同步練習(xí)冊答案