.已知函數(shù)f(x)=x2+|x-a|+1,a∈R.
(1)試判斷f(x)的奇偶性;
(2)若-≤a≤,求f(x)的最小值.
(1)f(x) 為非奇非偶函數(shù)(2)a2+1
(1)當(dāng)a=0時(shí),函數(shù)f(-x)=(-x)2+|-x|+1=f(x),
此時(shí),f(x)為偶函數(shù).當(dāng)a≠0時(shí),f(a)=a2+1,f(-a)=a2+2|a|+1,
f(a)≠f(-a),f(a)≠-f(-a),此時(shí),f(x) 為非奇非偶函數(shù).
(2)當(dāng)x≤a時(shí),f(x)=x2-x+a+1=(x-)2+a+,
∵a≤,故函數(shù)f(x)在(-∞,a]上單調(diào)遞減,
從而函數(shù)f(x)在(-∞,a]上的最小值為f(a)=a2+1.
當(dāng)x≥a時(shí),函數(shù)f(x)=x2+x-a+1=(x+)2-a+,
∵a≥-,故函數(shù)f(x)在[a,+∞)上單調(diào)遞增,從而函數(shù)f(x)在[a,+∞)上的最小值為f(a)=a2+1.
綜上得,當(dāng)-≤a≤時(shí),函數(shù)f(x)的最小值為a2+1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2x-2-x | 2x+2-x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x-1 | x+a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com