如圖,AC是圓O的直徑,點B在圓O上,,交AC于點M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1,

(1)證明;

(2)(文科)求三棱錐的體積

(理科)求平面和平面所成的銳二面角的正切值.

 

【答案】

(1)詳見解析;(2)(文科);(理科)1

【解析】

試題分析:(1)要證明直線和直線垂直,只需證明線和面垂直,由 ,∴,從而,在梯形中,證明,從而,∴;(2)(文科)求三棱錐的體積,關鍵是確定三棱錐的高,往往需要等體積轉化,,可得;(2)理科,題中未給出兩個半平面的交線,首先確定交線,延長,連結,然后先找二面角的平面角,再計算,過,垂足,連接,證明,則,就是所求二面角的平面角,計算即得結果.

試題解析:⑴∵EA⊥面ABC,BM面ABC,∴EA⊥MB,∴MB⊥AC,AC∩EA=A,∴MB⊥面ACEF,

∵EM面ACEF,∴EM⊥MB,在直角梯形ACEF中,EA=3,FC=1,AC=4,∴EF=,在Rt△ABC中, ∵

∠BAC=30°,BM⊥AC,∴AM=3,CM=1,∴EM=,MF=,∵EF2=EM2+MF2,∴EM⊥MF,  

又MB∩MF=M,∴EM⊥面MBF,   ∵BF面MBF,∴EM⊥BF       8分

⑵(文科) 由(1)知, MB⊥面ACFE    ∴,在直角梯形ACEF中,,,∴       14分

(理科)延長EF交AC于H,連結BH,過C做CG⊥BH,垂足G,FC∥EA,EA⊥面ABC,

∴FC⊥面ABC,∵BH面ABC,∴BH⊥FC,∵FC∩CG=C,∴BH⊥面FCG,∵FG面FCG,∴BH⊥FG,∴∠CGF為平面BEF與平面ABC所成的二面角的平面角,在直角梯形ACEF中,CH=2,,在△BCH中,CH=2,BC=2,∠BCH=,∴CG=1,在Rt△CGF中,FC=1,

∴∠CGF=,平面BEF與平面ABC所成的銳二面角正切值為1       14分

考點:1、線面垂直和線線垂直;2、(文科)三棱錐的體積;(理科)二面角的求法.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,某城市設立以城中心O為圓心、r公里為半徑的圓形保護區(qū),從保護區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當m=
6
+
2
2
時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,某城市設立以城中心O為圓心、r公里為半徑的圓形保護區(qū),從保護區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當數(shù)學公式時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省宿遷市沭陽縣高一(下)期中數(shù)學試卷(解析版) 題型:解答題

如圖,某城市設立以城中心O為圓心、r公里為半徑的圓形保護區(qū),從保護區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省寶雞中學2010屆高三適應性訓練(數(shù)學理) 題型:填空題

 A.(參數(shù)方程與極坐標)

直線與直線的夾角大小為         

 

B.(不等式選講)要使關于x的不等式在實數(shù)

范圍內有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點,CD過點E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習冊答案