(2009•浦東新區(qū)二模)一位同學對三元一次方程組
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
(其中實系數(shù)ai,bi,ci(i=1,2,3)不全為零)的解的情況進行研究后得到下列結論:
結論1:當D=0,且Dx=Dy=Dz=0時,方程組有無窮多解;
結論2:當D=0,且Dx,Dy,Dz都不為零時,方程組有無窮多解;
結論3:當D=0,且Dx=Dy=Dz=0時,方程組無解.
但是上述結論均不正確.下面給出的方程組可以作為結論1、2和3的反例依次為( 。
(1)
x+2y+3z=0
x+2y+3z=1
x+2y+3z=2
;  (2)
x+2y=0
x+2y+z=0
2x+4y=0
;  (3)
2x+y=1
-x+2y+z=0
x+3y+z=2
分析:根據(jù)所給的三個方程組,解方程組看一些方程組的解的情況,用方程組結合所給的三個結論,根據(jù)D,Dx,Dy,Dz時的值與0的關系,確定結論錯誤找出正確順序.
解答:解:看x,y,z的三元一次方程組
x+2y+3z=0
x+2y+3z=1
x+2y+3z=2
,
滿足D=0,且Dx=Dy=Dz=0,
但是這個三元一次方程組無解,
方程組
x+2y=0
x+2y+z=0
2x+4y=0
滿足D=0,且Dx=Dy=Dz=0,
這個方程組有無窮組解,而不是無解.
方程組
2x+y=1
-x+2y+z=0
x+3y+z=2
滿足當D=0,且Dx,Dy,Dz都不為零,
但是方程組有唯一解,
∴方程組可以作為結論1、2和3的反例依次為(1)(3)(2)
故選B.
點評:本題的實質是考查三元一次方程組的解法,本題解題的關鍵是把“三元”轉化為“二元”、把“二元”轉化為“一元”的消元的思想方法,從而進一步理解把“未知”轉化為“已知”和把復雜問題轉化為簡單問題的思想方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•浦東新區(qū)一模)如圖:某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越短,鋪設管道的成本越低.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=
3
+1
2
,求此時管道的長度L;
(3)問:當θ取何值時,鋪設管道的成本最低?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•浦東新區(qū)一模)已知數(shù)列{an}是等比數(shù)列,其前n項和為Sn,若S2=12,S3=a1-6,則
limn→∞
Sn
=
16
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•浦東新區(qū)一模)函數(shù)y=2sin2x的最小正周期為
π
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•浦東新區(qū)一模)對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
(3)設f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•浦東新區(qū)二模)在△ABC中,A、B、C所對的邊分別為a、b、c已知a=2
3
 , c=2
,且
.
sinCsinB0
0b-2c
cosA01
.
=0
,求△ABC的面積.

查看答案和解析>>

同步練習冊答案