如圖,底面為直角梯形的四棱錐中,AD∥BC,平面, ,BC=6.

(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.

(Ⅰ)詳見解析;(Ⅱ)

解析試題分析:本題主要以四棱錐為幾何背景考察線面垂直和二面角的求法,可以用傳統(tǒng)幾何法,也可以用空間向量法,突出考察空間想象能力和計算能力,(Ⅰ)由平面,得到,要證明平面,只需證明,在中,,在中,,所以,又,,所以,可證平面;(Ⅱ)用向量法求解,先求出面和面的法向量,再利用夾角公式求夾角.
試題解析:(Ⅰ)方法一:如圖,以A為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系,
,,,
,,,               2分
,,
, .                       6分
方法二:由平面,∴,在中,,在中,,所以,又,,所以,又∵,
(Ⅱ)設(shè)平面的法向量為
設(shè)平面的法向量為,
                                         8分

解得.
,則     10分

二面角的余弦值為.      12分

考點(diǎn):1、線面垂直的判定定理;2、向量法求二面角的大小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點(diǎn),,,.

(Ⅰ)求證:平面;
(Ⅱ)若點(diǎn)為線段的中點(diǎn),求異面直線所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,邊長為2的正方形ABCD,E,F分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于.

(1)求證:⊥EF;
(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,長方體中,,點(diǎn)E是AB的中點(diǎn).

(1)證明:平面;
(2)證明:;
(3)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,平面平面,,是等邊三角形,已知.

(1)設(shè)上的一點(diǎn),證明:平面平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在圓錐PO中, PO=,?O的直徑AB=2, C為弧AB的中點(diǎn),D為AC的中點(diǎn).

(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).

(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在三棱拄中,側(cè)面,已知,,.

(Ⅰ)求證:平面;
(Ⅱ)試在棱(不包含端點(diǎn))上確定一點(diǎn)的位置,使得;
(Ⅲ)在(Ⅱ)的條件下,求和平面所成角正弦值的大小.                                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面為平行四邊形,平面,中點(diǎn).

(1)求證:平面;
(2)若,求證:平面.

查看答案和解析>>

同步練習(xí)冊答案