已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
(Ⅲ)求證:(,e是自然對數(shù)的底數(shù)).
提示:
(Ⅰ)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅱ)實數(shù)a的取值范圍是;(Ⅲ)詳見解析.
【解析】
試題分析:(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間,即判斷在各個區(qū)間上的符號,只需對求導(dǎo)即可;(Ⅱ)當(dāng)時,不等式恒成立,即恒成立,令 (),只需求出最大值,讓最大值小于等于零即可,可利用導(dǎo)數(shù)求最值,從而求出的取值范圍;(Ⅲ)要證(成立,即證,即證,由(Ⅱ)可知當(dāng)時,在上恒成立,又因為,從而證出.
試題解析:(Ⅰ)當(dāng)時,(),(),
由解得,由解得,故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;
(Ⅱ)因當(dāng)時,不等式恒成立,即恒成立,設(shè) (),只需即可.由,
(。┊(dāng)時,,當(dāng)時,,函數(shù)在上單調(diào)遞減,故 成立;
(ⅱ)當(dāng)時,由,因,所以,①若,即時,在區(qū)間上,,則函數(shù)在上單調(diào)遞增,在 上無最大值(或:當(dāng)時,),此時不滿足條件;②若,即時,函數(shù)在上單調(diào)遞減,在區(qū)間上單調(diào)遞增,同樣 在上無最大值,不滿足條件 ;
(ⅲ)當(dāng)時,由,∵,∴,
∴,故函數(shù)在上單調(diào)遞減,故成立.
綜上所述,實數(shù)a的取值范圍是.
(Ⅲ)據(jù)(Ⅱ)知當(dāng)時,在上恒成立,又,
∵
,∴.
考點:1、利用導(dǎo)數(shù)的求單調(diào)區(qū)間, 2、利用導(dǎo)數(shù)求最值, 3、拆項相消法求數(shù)列的和.
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù),其中
(1) 當(dāng)滿足什么條件時,取得極值?
(2) 已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).
(1)當(dāng)a=3時,求f(x)的零點;
(2)求函數(shù)y=f (x)在區(qū)間[1,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),.
(1)當(dāng)為何值時,取得最大值,并求出其最大值;
(2)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)當(dāng)且時,證明:對,;
(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù) ,.
(1)當(dāng) 時,求函數(shù) 的最小值;
(2)當(dāng) 時,討論函數(shù) 的單調(diào)性;
(3)是否存在實數(shù),對任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com