已知函數(shù)

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

(Ⅲ)求證:,e是自然對數(shù)的底數(shù)).

提示:

 

【答案】

(Ⅰ)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅱ)實數(shù)a的取值范圍是;(Ⅲ)詳見解析.

【解析】

試題分析:(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間,即判斷在各個區(qū)間上的符號,只需對求導(dǎo)即可;(Ⅱ)當(dāng)時,不等式恒成立,即恒成立,令 (),只需求出最大值,讓最大值小于等于零即可,可利用導(dǎo)數(shù)求最值,從而求出的取值范圍;(Ⅲ)要證成立,即證,即證,由(Ⅱ)可知當(dāng)時,上恒成立,又因為,從而證出.

試題解析:(Ⅰ)當(dāng)時,),),

解得,由解得,故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

(Ⅱ)因當(dāng)時,不等式恒成立,即恒成立,設(shè) (),只需即可.由,

(。┊(dāng)時,,當(dāng)時,,函數(shù)上單調(diào)遞減,故 成立;

(ⅱ)當(dāng)時,由,因,所以,①若,即時,在區(qū)間上,,則函數(shù)上單調(diào)遞增, 上無最大值(或:當(dāng)時,),此時不滿足條件;②若,即時,函數(shù)上單調(diào)遞減,在區(qū)間上單調(diào)遞增,同樣 在上無最大值,不滿足條件 ;

(ⅲ)當(dāng)時,由,∵,∴

,故函數(shù)上單調(diào)遞減,故成立.

綜上所述,實數(shù)a的取值范圍是

(Ⅲ)據(jù)(Ⅱ)知當(dāng)時,上恒成立,又,

 

,∴

考點:1、利用導(dǎo)數(shù)的求單調(diào)區(qū)間, 2、利用導(dǎo)數(shù)求最值, 3、拆項相消法求數(shù)列的和.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),其中    

(1)      當(dāng)滿足什么條件時,取得極值?

(2)      已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)

(1)當(dāng)a=3時,求fx)的零點;

(2)求函數(shù)yf (x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省深圳市寶安區(qū)高三上學(xué)期調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),.

(1)當(dāng)為何值時,取得最大值,并求出其最大值;

(2)若,,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三5月高考三輪模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),

(1)當(dāng)時,證明:對,;

(2)若,且存在單調(diào)遞減區(qū)間,求的取值范圍;

(3)數(shù)列,若存在常數(shù),,都有,則稱數(shù)列有上界。已知,試判斷數(shù)列是否有上界.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù) ,

   (1)當(dāng)  時,求函數(shù)  的最小值;

   (2)當(dāng)  時,討論函數(shù)  的單調(diào)性;

   (3)是否存在實數(shù),對任意的 ,且,有,恒成立,若存在求出的取值范圍,若不存在,說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案