【題目】如圖所示,正三棱柱的高為2,是的中點,是的中點
(1)證明:平面;
(2)若三棱錐的體積為,求該正三棱柱的底面邊長.
【答案】(1)見解析(2)2
【解析】
試題分析:(1)由三角形中位線性質(zhì)得DE//AC1,再根據(jù)線面平行判定定理得結(jié)果(2)根據(jù)平行性質(zhì)得D到平面BCC1B1的距離是A到平面BCC1B1的距離的一半,再根據(jù)錐體體積公式列方程解得底面邊長
試題解析:(Ⅰ)證明:如圖,連接AB1,AC1,
易知D是AB1的中點,
又E是B1C1的中點,
所以在中,DE//AC1,
又DE平面ACC1A1,AC1平面ACC1A1,
所以DE//平面ACC1A1.
(Ⅱ)解:,
D是AB1的中點,
D到平面BCC1B1的距離是A到平面BCC1B1的距離的一半,
如圖,作AFBC交BC于F,由正三棱柱的性質(zhì),易證AF平面BCC1B1,
設(shè)底面正三角形邊長為,則三棱錐DEBC的高h=AF=,
,所以,
解得.
所以該正三棱柱的底面邊長為2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,求∠AOB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a、b、c為三條不重合的直線,α、β、γ為三個不重合的平面,現(xiàn)給出六個命題.
①a∥b; ②a∥b; ③α∥β;
④α∥β; ⑤a∥α; ⑥a∥α,
其中正確的命題是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式|x﹣ ≤ 的解集為{x|n≤x≤m}
(1)求實數(shù)m,n;
(2)若實數(shù)a,b滿足:|a+b|<m,|2a﹣b|<n,求證:|b|< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為,離心率為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于, 兩點, , 分別為線段, 的中點,若坐標(biāo)原點在以為直徑的圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)首項為1的正項數(shù)列{an}的前n項和為Sn , 且Sn+1﹣3Sn=1.
(1)求證:數(shù)列{an}為等比數(shù)列;
(2)數(shù)列{an}是否存在一項ak , 使得ak恰好可以表示為該數(shù)列中連續(xù)r(r∈N* , r≥2)項的和?請說明理由;
(3)設(shè) ,試問是否存在正整數(shù)p,q(1<p<q)使b1 , bp , bq成等差數(shù)列?若存在,求出所有滿足條件的數(shù)組(p,q);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com