解答:
解:(Ⅰ)f'(x)=3x
2-3(t+1)x+3t,…(1分)
因為函數(shù)f(x)在點(2,f(2))處的切線與直線y=9x-2平行,
所以f'(2)=9,3×2
2-3(t+1)×2+3t=9,
∴t=-1,即t的值為-1. …(4分)
(Ⅱ)g(x)=f'(x)+3lnx-3x
2=3x
2-3(t+1)x+3t+3lnx-3x
2=-3(t+1)x+3t+3lnx
g′(x)=-3(t+1)=3[-(t+1)],…(5分)
①當 t+1≤0時,即 t≤-1時,g'(x)>0,函數(shù)g(x)在(0,+∞)上單調(diào)遞增;
②當 t+1>0時,即 t>-1時,
x∈(0,)時,g'(x)>0;
x∈(,+∞)時,g'(x)<0,
即函數(shù)g(x)在
(0,)上單調(diào)遞增,函數(shù)g(x)在
(,+∞)上單調(diào)遞減,
綜上,當t≤-1時,函數(shù)g(x)在(0,+∞)上單調(diào)遞增;當t>-1時,函數(shù)g(x)在
(0,)上單調(diào)遞增,
函數(shù)g(x)在
(,+∞)上單調(diào)遞減 …(8分)
(Ⅲ)f'(x)=3x
2-3(t+1)x+3t,令f'(x)=0得x=1,x=t
①當t≤0時,f(x)在(0,1)單調(diào)遞減,在(1,2)單調(diào)遞增,
∴?x
0=1,使f(1)是f(x)在x∈[0,2]上的最小值,
f(x)min=f(1)=+t…(9分)
②當0<t<1時,f(x)在(0,t)和(1,2)單調(diào)遞增,在(t,1)單調(diào)遞減,∴
,
,解得
0<t≤當
0<t≤時,使f(1)是f(x)在x∈[0,2]上的最小值; …(10分)
③當t=1時,f'(x)=3(x-1)
2≥0,f(x)在(0,2)單調(diào)遞增,
不存在x
0∈(0,2),使得f(x
0)是f(x)在x∈[0,2]上的最小值; …(11分)
④當1<t<2時,f(x)在(0,1)和(t,2)單調(diào)遞增,在(1,t)單調(diào)遞減,
,
,
無實數(shù)解; …(12分)
⑤當t≥2時,f(x)在(0,1)單調(diào)遞增,在(1,2)單調(diào)遞減,
∴x
0∈(0,2)函數(shù)f(x)沒有最小值. …(13分)
綜上,
t∈(-∞,]時,存在x
0∈(0,2),使得f(x
0)是f(x)在x∈[0,2]上的最小值.…(14分)