已知橢圓
x22
+y2=1
的右準(zhǔn)線(xiàn)l與x軸相交于點(diǎn)E,過(guò)橢圓右焦點(diǎn)F的直線(xiàn)與橢圓相交于A、B兩點(diǎn),點(diǎn)C在右準(zhǔn)線(xiàn)l上,且BC∥x軸?求證直線(xiàn)AC經(jīng)過(guò)線(xiàn)段EF的中點(diǎn).
分析:欲證直線(xiàn)AC經(jīng)過(guò)線(xiàn)段EF的中點(diǎn),分兩類(lèi)討論:①若AB垂直于x軸,②若AB不垂直于x軸,對(duì)于第一種特殊情況比較簡(jiǎn)單,直接驗(yàn)證即可;對(duì)于第二種情況,記A(x1,y1)和B(x2,y2),求出直線(xiàn)AN,CN的斜率看它們是不是相等,若相等,則可得A、C、N三點(diǎn)共線(xiàn).即可證得直線(xiàn)AC經(jīng)過(guò)線(xiàn)段EF的中點(diǎn)N.
解答:證明:依設(shè),得橢圓的半焦距c=1,右焦點(diǎn)為F(1,0),
右準(zhǔn)線(xiàn)方程為x=2,點(diǎn)E的坐標(biāo)為(2,0),
EF的中點(diǎn)為N(
3
2
,0)(3分)
若AB垂直于x軸,
則A(1,y1),B(1,-y1),C(2,-y1),
∴AC中點(diǎn)為N(
3
2
,0),
即AC過(guò)EF中點(diǎn)N.
若AB不垂直于x軸,由直線(xiàn)AB過(guò)點(diǎn)F,
且由BC∥x軸知點(diǎn)B不在x軸上,
故直線(xiàn)AB的方程為y=k(x-1),k≠0.
記A(x1,y1)和B(x2,y2),
則C(2,y2)且x1,
x2滿(mǎn)足二次方程
x2
2
+k2(x-1)2=1

即(1+2k2)x2-4k2x+2(k2-1)=0,
∴x1+x2=
4k2
1+2k2
x1x2=
2(k2-1)
1+2k2
(10分)
又x21=2-2y21<2,得x1-
3
2
≠0,
故直線(xiàn)AN,CN的斜率分別為
k1=
y1
x1-
3
2
=
2k(x1-1)
2x1-3
k2=
y2
2-
3
2
=2k(x2-1)

∴k1-k2=2k•
(x1-1)-(x2-1)(2x1-3)
2x1-3

∵(x1-1)-(x2-1)(2x1-3)=3(x1+x2)-2x1x2-4
=
1
1+2k2
[12k2-4(k2-1)-4(1+2k2)]=0

∴k1-k2=0,即k1=k2,故A、C、N三點(diǎn)共線(xiàn).
所以,直線(xiàn)AC經(jīng)過(guò)線(xiàn)段EF的中點(diǎn)N.(14分)
點(diǎn)評(píng):直線(xiàn)與圓錐曲線(xiàn)聯(lián)系在一起的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關(guān)系的判定,弦長(zhǎng)問(wèn)題、最值問(wèn)題、對(duì)稱(chēng)問(wèn)題、軌跡問(wèn)題等,突出考查了數(shù)形結(jié)合、分類(lèi)討論、函數(shù)與方程、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法,要求考生分析問(wèn)題和解決問(wèn)題的能力、計(jì)算能力較高,起到了拉開(kāi)考生“檔次”,有利于選拔的功能
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x22
+y2=1
的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).
(I)求過(guò)點(diǎn)O、F,并且與橢圓的左準(zhǔn)線(xiàn)l相切的圓的方程;
(II)設(shè)過(guò)點(diǎn)F的直線(xiàn)交橢圓于A、B兩點(diǎn),并且線(xiàn)段AB的中點(diǎn)在直線(xiàn)x+y=0上,求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
2
+y2=1
的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).過(guò)點(diǎn)F的直線(xiàn)l交橢圓于A、B兩點(diǎn).
(1)若直線(xiàn)l的傾斜角α=
π
4
,求|AB|;
(2)求弦AB的中點(diǎn)M的軌跡方程;
(3)設(shè)過(guò)點(diǎn)F且不與坐標(biāo)軸垂直的直線(xiàn)交橢圓于A、B兩點(diǎn),
線(xiàn)段AB的垂直平分線(xiàn)與x軸交于點(diǎn)G,求點(diǎn)G橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x22
+y2=1的左、右焦點(diǎn)為F1、F2,上頂點(diǎn)為A,直線(xiàn)AF1交橢圓于B.如圖所示沿x軸折起,使得平面AF1F2⊥平面BF1F2.點(diǎn)O為坐標(biāo)原點(diǎn).
( I ) 求三棱錐A-F1F2B的體積;
(Ⅱ)圖2中線(xiàn)段BF2上是否存在點(diǎn)M,使得AM⊥OB,若存在,請(qǐng)?jiān)趫D1中指出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐘祥市模擬)如圖,已知橢圓
x2
2
+y2=1
內(nèi)有一點(diǎn)M,過(guò)M作兩條動(dòng)直線(xiàn)AC、BD分別交橢圓于A、C和B、D兩點(diǎn),若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)證明:AC⊥BD;
(2)若M點(diǎn)恰好為橢圓中心O
(i)四邊形ABCD是否存在內(nèi)切圓?若存在,求其內(nèi)切圓方程;若不存在,請(qǐng)說(shuō)明理由.
(ii)求弦AB長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案