若方程=2有實數(shù)解,求實數(shù)a的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:湖南省瀏陽一中2012屆高三第二次月考數(shù)學文科試題 題型:022

三次函數(shù)f(x)=ax3bx2cxd(a≠0),定義:設(shè)是函數(shù)yf(x)的導數(shù),的導數(shù).若方程(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)yf(x)的“拐點”.

有同學發(fā)現(xiàn)“任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心;且“拐點”就是對稱中心.”請你根據(jù)這一發(fā)現(xiàn),求:

(1)函數(shù)f(x)=x3-3x2+3x對稱中心為________;

(2)若函數(shù)g(x)=x3x2+3x,則g()+g()+g()+g()+…+g()=________

查看答案和解析>>

科目:高中數(shù)學 來源:湖南省岳陽市一中2009屆高三第七次月考數(shù)學(文)試題 題型:044

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).

定義:(1)設(shè)是函數(shù)y=f(x)的導數(shù)y=的導數(shù),若方程=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;

定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(x0,f(x0))對稱.

己知f(x)=x3-3x2+2x+2,請回答下列問題:

(1)求函數(shù)f(x)的“拐點”A的坐標

(2)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論(不必證明)

(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

科目:高中數(shù)學 來源:山東省泰安市2012屆高三上學期期中考試數(shù)學文科試題 題型:044

已知向量=(1,-2)與(1,λ)

(Ⅰ)若方向上的投影為,求λ的值;

(Ⅱ)命題P:向量的夾角為銳角;

命題q:關(guān)于x的方程·=0有實數(shù)解,其中向量=(x-2,1)=(x,λ2)(λ∈R)

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省揚州中學2012屆高三上學期11月練習數(shù)學試題 題型:044

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).

定義:(1)設(shè)是函數(shù)y=f(x)的導數(shù)的導數(shù),若方程=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;

定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(x0,f(x0))對稱.

己知f(x)=x3-2x2+2,請回答下列問題:

(1)求函數(shù)f(x)的“拐點”A的坐標

(2)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論(不必證明)

(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

同步練習冊答案