(本小題滿分l2分)

    已知函數(shù)

   (1)求的導(dǎo)數(shù);

   (2)求證:不等式上恒成立;

   (3)求的最大值.

 

【答案】

(1)

(2)上恒成立

(3)

【解析】解:(1)………………………………………(2分)

(2)由(1)知,其中

    令,對(duì)求導(dǎo)數(shù)得

   

    = 上恒成立.

    故的導(dǎo)函數(shù)在上為增函數(shù),故

    進(jìn)而知上為增函數(shù),故

    當(dāng)時(shí),顯然成立.

    于是有上恒成立.…………………………(9分)

    (3) 由(2)可知上恒成立.

    則上恒成立.即單增

    于是……………………(12分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分l2分)已知數(shù)列{an}中,a1=1,a2=3且2an+1=an+2+an(n∈N*).?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,其中b1=-,bn+1=-Sn(n∈N*).

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)若Tn+…+,求Tn的表達(dá)式

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬沖刺考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分l2分)已知橢圓的的右頂點(diǎn)為A,離心率,過左焦點(diǎn)作直線與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線交于點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)證明以線段為直徑的圓經(jīng)過焦點(diǎn)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省高三年級(jí)第五次月考文科數(shù)學(xué) 題型:解答題

(本小題滿分l2分)(注意:在試題卷上作答無效)

求經(jīng)過A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上的圓的方程

(I)求出圓的標(biāo)準(zhǔn)方程

(II)求出(I)中的圓與直線3x+4y=0相交的弦長(zhǎng)AB

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三上學(xué)期10月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分l2分)設(shè)命題:函數(shù))的值域是;命題:指數(shù)函數(shù)上是減函數(shù).若命題“”是假命題,求實(shí)數(shù)的范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山西省高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分l2分)求垂直于直線并且與曲線相切的直線方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案