年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖是一個(gè)無(wú)蓋的正方體盒子展開(kāi)后的平面圖,是展開(kāi)圖上的三點(diǎn),
則在正方體盒子中,的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),曲線P在以該直角坐標(biāo)系的原點(diǎn)O的為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系下的方程為.
(Ⅰ)求曲線C的普通方程和曲線P的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C和曲線P的交點(diǎn)為A、B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某制造商3月生產(chǎn)了一批乒乓球,隨機(jī)抽樣100個(gè)進(jìn)行檢查,測(cè)得每個(gè)球的直徑(單位:mm),將數(shù)據(jù)分組如下:
分組 | 頻數(shù) | 頻率 |
[39.95,39.97) | 10 | |
[39.97,39.99) | 20 | |
[39.99,40.01) | 50 | |
[40.01,40.03] | 20 | |
合計(jì) | 100 |
(1)請(qǐng)?jiān)谏?img src="http://thumb.zyjl.cn/pic1/files/down/test/2014/09/19/14/2014091914352099291426.files/image042.gif">表中補(bǔ)充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在圖中畫(huà)出頻率分布直方圖;
(2)若以上述頻率作為概率,已知標(biāo)準(zhǔn)乒乓球的直徑為40.00 mm,試求這批球的直徑誤差不超過(guò)0.03 mm的概率;
(3)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)經(jīng)常用該組區(qū)間的中點(diǎn)值(例如區(qū)間[39.99,40.01)的中點(diǎn)值是40.00)作為代表.據(jù)此估計(jì)這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
定義非零向量的“相伴函數(shù)”為,向量稱(chēng)為的“相伴向量”(其中O為坐標(biāo)原點(diǎn)).記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為
(1)設(shè)
①求證:
②求(1)中函數(shù)h(x)的“相伴向量”的模;
(2)已知點(diǎn)滿足:,向量“相伴函數(shù)”在處取得最大值,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
下列結(jié)論中是真命題的是__________(填序號(hào)).
①f(x)=ax2+bx+c在[0,+∞)上是增函數(shù)的一個(gè)充分條件是-<0;
②已知甲:x+y≠3,乙:x≠1或y≠2,則甲是乙的充分不必要條件;
③數(shù)列{an}(n∈N*)是等差數(shù)列的充要條件是Pn是共線的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
甲、乙兩人下棋,和棋的概率為,乙獲勝的概率為,則下列說(shuō)法正確的是( )
A.甲獲勝的概率是 B.甲不輸?shù)母怕适?sub>
C.乙輸了的概率是 D.乙不輸?shù)母怕适?sub>
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com