已知n是正整數(shù),數(shù)列{an}的前n項和為Sn,a1=1,Sn是nan與an的等差中項,則an等于(  )
分析:利用Sn是nan與an的等差中項,得到數(shù)列遞推式,再寫一式,兩式相減,利用疊乘法,即可得到結(jié)論.
解答:解:∵Sn是nan與an的等差中項,
∴2Sn=(n+1)an,
當n≥2時,2Sn-1=nan-1,
兩式相減可得2an=(n+1)an-nan-1,∴
an
an-1
=
n
n-1

an=a1×
a2
a1
×…×
an
an-1
=1×2×…
n
n-1
=n
故選C.
點評:本題考查數(shù)列遞推式,考查數(shù)列的性質(zhì),考查疊乘法的運用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知n是正整數(shù),數(shù)列{an }的前n項和為Sn,a1=1,數(shù)列{
1an
}的前n項和為Tn,數(shù)列{ Tn }的前n項和為Pn,Sn是nan與an的等差中項•
(1)求Sn;
(2)證明:(n+1)Tn+1-nTn-1=Tn
(3)是否存在數(shù)列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有數(shù)列{bn},若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n是正整數(shù),數(shù)列{art }的前n項和為Sna1=1,數(shù)列{
1
an
}的前n項和為Tn數(shù)列{ Tn }的前n項和為Pn,Sn,是nan,an的等差中項•
(I )求
lim
n→∞
Sn
n2

(II)比較(n+1)Tn+1-nTn與1+Tn大;
(III)是否存在數(shù)列{bn},使Pn=(bn+1)Tn-bn?若存在,求出所有數(shù)列{bn},若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n是正整數(shù),數(shù)列{an}的前n項和為Sn,對任何正整數(shù)n,等式Sn=-an+
12
(n-3)都成立.
(I)求數(shù)列{an}的首項a1
(II)求數(shù)列{an}的通項公式;
(III)設數(shù)列{nan}的前n項和為Tn,不等式2Tn≤(2n+4)Sn+3是否對一切正整數(shù)n恒成立?若不恒成立,請求出不成立時n的所有值;若恒成立,請給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知n是正整數(shù),數(shù)列{an}的前n項和為Sn,且滿足Sn=-an+
12
(n-3),數(shù)列(nan)的前n項和為Tn
(1)求數(shù)列{an}的通項公式;
(2)求Tn;
(3)設An=2Tn,Bn=(2n+4)Sn+3,試比較An與Bn的大小.

查看答案和解析>>

同步練習冊答案