【題目】已知函數(shù)f(x)=x2﹣2x﹣8,g(x)=2x2﹣5x﹣18
(1)求不等式g(x)<0的解集
(2)若對一切x>2,均有f(x)≥(m+2)x﹣m﹣15成立,求實數(shù)m的取值范圍.
【答案】
(1)解:g(x)=2x2﹣5x﹣18<0
∴(2x﹣9)(x+2)<0解得 ,
∴不等式g(x)<0的解集為
(2)解:解法一:∵f(x)=x2﹣2x﹣8當(dāng)x>2時,f(x)≥(m+2)x﹣m﹣15恒成立,
∴x2﹣2x﹣8≥(m+2)x﹣m﹣15,即x2﹣4x+7≥m(x﹣1),
∴對一切x>2,均有不等式 成立.
而 (當(dāng)x=3時等號成立).
∵x>2,
∴實數(shù)m的取值范圍是(﹣∞,2].
解法二:∵f(x)=x2﹣2x﹣8當(dāng)x>2時,f(x)≥(m+2)x﹣m﹣15恒成立,
即x2﹣(m+4)x+m+7≥0對x>2恒成立
令h(x)=x2﹣(m+4)x+m+7,
△=(m+4)2﹣4(m+7)=m2+4m﹣12=(m+6)(m﹣2)
①當(dāng)h(x)圖象與x軸沒有交點或只有一個交點時,△≤0即﹣6≤m≤2時滿足條件
②當(dāng)h(x)圖象與x軸有兩個交點時,則有 即
綜上所述,實數(shù)m的取值范圍是(﹣∞,2]
【解析】(1)直接因式分解后求解不等式的解集;(2)解法一:把函數(shù)f(x)的解析式代入f(x)≥(m+2)x﹣m﹣15,分離變量m后利用基本不等式求解m的取值范圍.解法二:構(gòu)造函數(shù)h(x)=x2﹣(m+4)x+m+7,根據(jù)方程根的問題,分類討論即可求出.
【考點精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣x2 , 若方程f(x)+m=0在 內(nèi)有兩個不等的實根,則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求證:對時, ;
(2)當(dāng)時,討論函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述正確的是 .
① G為△ABC的重心,.
② 為△ABC的垂心;
③ 為△ABC的外心;
④ O為△ABC的內(nèi)心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué),在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理、化學(xué)等其他互不相同的七個學(xué)院,現(xiàn)從這10名同學(xué)中隨機(jī)選取3名同學(xué),到希望小學(xué)進(jìn)行支教活動(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)X為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)若時,函數(shù)有且只有一個零點,求實數(shù)的值;
(3若,對于區(qū)間上的任意兩個不相等的實數(shù),都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com