【題目】某校高三某班的一次測(cè)試成績(jī)的頻率分布表以及頻率分布直方圖中的部分?jǐn)?shù)據(jù)如下,請(qǐng)根據(jù)此解答如下問(wèn)題:
(1)求班級(jí)的總?cè)藬?shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補(bǔ)充完整;
(3)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100)之間的概率.
分組 | 頻數(shù) | 頻率 |
[50,60) | 0.08 | |
[60,70) | 7 | |
[70,80) | 10 | |
[80,90) | ||
[90,100) | 2 |
【答案】
(1)解:分?jǐn)?shù)在[90,100)的頻率為0.008×10=0.08,頻數(shù)為2,
∴全班人數(shù)為 =25
(2)解:[50,60)頻數(shù)為2;[60,70)頻率為 =0.28;[70,80)頻率為 =0.4;[80,90)頻數(shù)為4,頻率為0.16,頻率分布表
分組 | 頻數(shù) | 頻率 |
[50,60) | 2 | 0.08 |
[60,70) | 7 | 0.28 |
[70,80) | 10 | 0.40 |
[80,90) | 4 | 0.16 |
[90,100) | 2 | 0.08 |
頻率分布直方圖
;
(3)解:將[80,90)之間的頻數(shù)為4,[90,100)之間的頻數(shù)為2,
在[80,100)之間的試卷中任取兩份的基本事件為 =15個(gè),
其中,至少有一個(gè)在[90,100)之間的基本事件有9個(gè),
故至少有一份分?jǐn)?shù)在[90,100)之間的概率是0.6.
【解析】(1)分?jǐn)?shù)在[90,100)的頻率為0.008×10=0.08,頻數(shù)為2,即可求得本次考試的總?cè)藬?shù);(2)[50,60)頻數(shù)為2;[60,70)頻率為 =0.28;[70,80)頻率為 =0.4;[80,90)頻數(shù)為4,頻率為0.16,可得頻率分布表及頻率分布直方圖的空余位置;(3)用列舉法列舉出所有的基本事件,找出符合題意得基本事件個(gè)數(shù),利用古典概型概率計(jì)算公式即可求出結(jié)果.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用頻率分布表和頻率分布直方圖的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點(diǎn),將數(shù)據(jù)分組;第四步,列頻率分布表;頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市100戶(hù)居民的月平均用電量(單位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖示. (Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶(hù)中,用分層抽樣的方法抽取10戶(hù)居民,則月平均用電量在[220,240)的用戶(hù)中應(yīng)抽取多少戶(hù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,集合A= ,B={y|y=log2x,4<x<16},
(1)求圖中陰影部分表示的集合C;
(2)若非空集合D={x|4﹣a<x<a},且D(A∪B),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=3sin(ωx+) 的部分圖象如圖所示,A,B兩點(diǎn)之間的距離為10,且f(2)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)的單位長(zhǎng)度后所得函數(shù)圖象關(guān)于y軸對(duì)稱(chēng),則t的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差恒不變;
②設(shè)有一個(gè)回歸方程,變量增加一個(gè)單位時(shí),平均增加個(gè)單位;
③線(xiàn)性回歸方程必過(guò));
④在一個(gè)列聯(lián)表中,由計(jì)算得,則有以上的把握認(rèn)為這兩個(gè)變量間有關(guān)系.
其中錯(cuò)誤的個(gè)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心在直線(xiàn)3x+y﹣1=0上,且x軸,y軸被圓C截得的弦長(zhǎng)分別為2 ,4 ,若圓心C位于第四象限
(1)求圓C的方程;
(2)設(shè)x軸被圓C截得的弦AB的中心為N,動(dòng)點(diǎn)P在圓C內(nèi)且P的坐標(biāo)滿(mǎn)足關(guān)系式(x﹣1)2﹣y2= ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: 經(jīng)過(guò)點(diǎn)P(2,1),且離心率為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),在橢圓短軸上有兩點(diǎn)M,N滿(mǎn)足,直線(xiàn)PM、PN分別交橢圓于A,B.探求直線(xiàn)AB是否過(guò)定點(diǎn),如果經(jīng)過(guò)定點(diǎn)請(qǐng)求出定點(diǎn)的坐標(biāo),如果不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形是矩形, , 分別是, 中點(diǎn), , .
(Ⅰ)求證: 平面.
(Ⅱ)求證: 平面.
(Ⅲ)求證:平面平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com